Pharmaceutical Chemistry Journal

, Volume 39, Issue 7, pp 381–384 | Cite as

Hydrolytic and Reductive Transformations of Nifuroxazide

  • L. A. Trukhacheva
  • N. B. Grigor'ev
  • A. P. Arzamastsev
  • V. G. Granik


The elimination of nitro groups in the form of nitrite anions in the course of reduction and alkaline hydrolysis of the antitumor drug nifuroxazide has been studied using polarographic and photometric techniques. The experimentally determined reaction rate constants are used to calculate the thermodynamic parameters (ΔG, Δ H, ΔS). It is suggested that the therapeutic action of nifuroxazide is related not only to the formation of nitro radical anions in vivo, but also to the production of nitric oxide as a result of the biotransformation of this drug.


Oxide Nitric Oxide Organic Chemistry Nitrite Thermodynamic Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Blyuger, Nitrofurans and Their Use in Medicine [in Russian], Riga (1958).Google Scholar
  2. 2.
    D. R. McCalla, J. Antimicrob. Chemother., 3, 517–520 (1977).PubMedGoogle Scholar
  3. 3.
    R. E. Chamberlain, J. Antimicrob. Chemother., 2, 325–336 (1976).PubMedGoogle Scholar
  4. 4.
    M. Dymicky, C. N. Huhtanen, and A. E. Wasserman, Antimicrob. Agents Chemother., 12(3), 353–356 (1977).PubMedGoogle Scholar
  5. 5.
    S. N. Moreno and R. Docampo, Environ. HealthPerspect, 64, 199–208 (1985).Google Scholar
  6. 6.
    C. Viode, N. Bettache, N. Cenas, et al., Biochem. Pharmacol., 57(5), 549–557 (1999).PubMedGoogle Scholar
  7. 7.
    V. I. Levina, L. A. Trukhacheva, N. V. Pyatakova, et al., Khim.-Farm. Zh., 38(1), 15–18 (2004).Google Scholar
  8. 8.
    N. B. Grigor'ev, V. I. Levina, O. V. Azizov, et al., Vopr. Biol. Med. Farmats. Khim., No. 4, 10–14 (2002).Google Scholar
  9. 9.
    V. I. Levina, O. V. Azizov, N. V. Pyatakova, et al., Vopr. Biol. Med. Farmats. Khim., No. 4, 6–10 (2002).Google Scholar
  10. 10.
    G. V. Chechekin, V. I. Levina, A. P. Arzamastsev, et al., Khim. Geterotsikl. Soedin., No. 7, 902–906 (1999).Google Scholar
  11. 11.
    V. E. Shubin, Stud. Biophys., 97(2), 157–164 (1983).Google Scholar
  12. 12.
    L. C. Tavares, J. J. Christe, M. G. Santos, et al., Boll Chim Farm., 138(8), 432–436 (1999).PubMedGoogle Scholar
  13. 13.
    Advances in the Chemistry of Furan [in Russian], Zinatne, Riga (1978).Google Scholar
  14. 14.
    J. J. Doel, B. L. J. Godber, T. A. Goult, et al., 270, 880–885 (2000).Google Scholar
  15. 15.
    P. Cogolli, L. Testaferri, M. Tiecco, et al., J. Chem. Soc., Chem. Commun., 18, 800–801 (1979).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • L. A. Trukhacheva
    • 1
  • N. B. Grigor'ev
    • 2
  • A. P. Arzamastsev
    • 1
  • V. G. Granik
    • 2
  1. 1.Sechenov Medical AcademyMoscowRussia
  2. 2.State Research Center for AntibioticsMoscowRussia

Personalised recommendations