Advertisement

Pharmaceutical Chemistry Journal

, Volume 39, Issue 6, pp 292–295 | Cite as

Synthesis and Myorelaxant Activity of 1,3-Bis-(5-ammoniopentyl)-6-methyluracil Dibromides

  • V. V. Zobov
  • K. A. Petrov
  • A. A. Aslyamova
  • L. A. Berezinskii
  • V. S. Reznik
  • V. D. Akamsin
  • I. V. Galyametdinova
  • R. Kh. Giniyatullin
Article

Abstract

Some representatives of 1,3-bis-(5-ammoniopentyl)uracil dibromides with the anticholinesterase type of activity are classified as highly/moderately toxic in mice and as slightly toxic/practically nontoxic in daphnia. Under the conditions of functional testing (treadmill running test in mice, i.p.), compounds with less bulky substituents (H, F, Br, CH3, CN, NO2, and CH3O groups) at positions 5 and 6 of the uracil cycle are more effective and safer than proserine and BW284c51: (a) they induce the development of a clearly pronounced myorelaxant effect lasting over not less than one day (ED50 = 0.03 – 0.11 µM/kg), (b) the ratio LD50/ED50 is below 76.67. An increase in length of the aliphatic radical in position 5 of the uracil cycle leads to a gradual increase in the toxicity with respect to daphnia, while the toxicity with respect to mice exhibits a decrease.

Keywords

Organic Chemistry Gradual Increase Uracil Functional Testing Dibromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. V. Zobov, K. A. Petrov, A. A. Aslyamova, et al., Sovr. Probl. Toksikol. (Kiev), no. 3, 25–33 (2004).Google Scholar
  2. 2.
    V. V. Zobov, A. A. Aslyamova, L. A. Berezinsky, et al., Khim.-Farm. Zh., 38(10), 20–23 (2004).Google Scholar
  3. 3.
    G. S. Fomin, Water: Chemical, Bacterial, and Radioactive Safety Monitored According to International Standards [in Russian], Protector, Moscow (1995), pp. 410–458.Google Scholar
  4. 4.
    B. J. Jones and D. J. Roberts, J. Pharm. Pharmacol., 20, 302–304 (1968).PubMedGoogle Scholar
  5. 5.
    Yu. G. Bobkov, V. M. Vinogradov, V. V. Katkov, et al., Pharmacological Correction of Fatigue [in Russian], Meditsina, Moscow (1984).Google Scholar
  6. 6.
    V. B. Prozorovskii and N. V. Savateev, Nonanticholinesterase Mechanisms in the Action of Anticholinesterase Agents [in Russian], Meditsina, Leningrad (1976), pp. 62–80.Google Scholar
  7. 7.
    F. Hobbinger, in: Handbook of Experimental Pharmacology, E. Zamis (ed.), Springer-Verlag, Berlin (1976), Vol. 42, pp. 487–581.Google Scholar
  8. 8.
    I. V. Sanotskii and I. P. Ulanova, Criteria of Hazard in Hygiene and Toxicology of Dangerous Chemical Compounds [in Russian], Meditsina, Moscow (1975), pp. 55–59.Google Scholar
  9. 9.
    A Collection of Normative and Methodological Documentation on Handling Production and Consumption Wastes [in Russian], Logus, Moscow (1996), Supplement 1, pp. 67–68.Google Scholar
  10. 10.
    V. V. Zobov, L. A. Berezinskii, V. S. Reznik, and V. D. Akamsin, Khim.-Farm. Zh., 36(11), 21–22 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • V. V. Zobov
    • 1
  • K. A. Petrov
    • 1
  • A. A. Aslyamova
    • 1
  • L. A. Berezinskii
    • 1
  • V. S. Reznik
    • 1
  • V. D. Akamsin
    • 1
  • I. V. Galyametdinova
    • 1
  • R. Kh. Giniyatullin
    • 1
  1. 1.Arbuzov Institute of Organic and Physical ChemistryRussian Academy of SciencesKazan, TatarstanRussia

Personalised recommendations