Production of Graphite During the Extinguishing Arc with New SF6 Alternative Gases


Most high voltage circuit breakers in operation use SF6 as the arc interruption medium because of its high dielectric strength and good arc interruption properties. However SF6 also displays a high global warming potential which motivates the investigation of possible alternatives such as CO2–Novec™4710 and N2–Novec™5110 mixtures proposed by different HVCB manufacturers. CB power test comparison between pure CO2 and CO2–Novec™4710 mixture shows that the latter created a large amount of graphite and reduced CB performances after several current breaking shots. Using Gibbs free energy method, a theoretical study has been conducted on SF6 replacement candidates listed above. Aiming to understand graphite formation, several parameters impact were discussed: carrier gas such as CO2 and N2, pressure and O2 initial mixture proportions. The study focuses on graphite condensation temperature and graphite production amount evolutions in respect to the study parameters as well as in respect to CB inter-contacts space condition in terms of pressure and temperature at current-zero. It has been shown that a high percentage of CO2 in the mixture reduces graphite condensation temperature by 2600 K while adding N2 do not make such an impact. Pressure increases graphite condensation temperature and O2 reduces it. The amount of graphite produced is pressure independent but decreases with the increase of O2 proportion in the initial mixture. It has been shown that adding a sufficient O2 amount can prevent graphite production at all.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Kieffel Y, Biquez F, Ponchon P, Irwin T (2015) SF6 alternative development for high voltage switchgears. In: IEEE electrical insulation conference (EIC).

  2. 2.

    Christophorou ELG, Olthoff JK (2004) Gaseous dielectrics IX. Plenum Publishers, New York. ISBN 978-1-4613-5143-6

    Google Scholar 

  3. 3.

    Mantilla JD, Gariboldi N, Grob S, Claessens M (2014) Investigation of the insulation performance of a new gas mixture with extremely low GWP. In: Electrical insulation conference, Philadelphia, Pennsylvania, USA.

  4. 4.

    André P, Koalaga Z (2010) Composition of a thermal plasma formed from PTFE with copper in non-oxidant atmosphere. Part I: definition of a test case with the SF6. High Temp Mater Process 14(3):279.

    Article  Google Scholar 

  5. 5.

    Robin-Jouan P, Bousoltane K, Kieffel Y, Trepanier JY, Camarero R, Arabi S, Pernaudat G (2017) Analysis of last development results for high voltage circuit-breakers using new g3 gas. Plasma Phys Technol 4(2):157–160.

    Article  Google Scholar 

  6. 6.

    Diggmann T, Tehlar D, Chang J, Zache S (2016) AirPlus™ an alternative to SF6 as an insulation and switching medium in electrical switchgear. ABB review, pp 68–72. Accessed Nov 2019

  7. 7.

    Yang A, Liu Y, Sun B, Wang X, Cressault Y, Zhong L, Rong MZ, Wu Y, Niu C (2015) Thermodynamic properties and transport coefficients of high-temperature CO2 thermal plasmas, mixed with C2F4. J Phys D Appl Phys 48:495202.

    CAS  Article  Google Scholar 

  8. 8.

    Wang WZ, Wu Y, Rong MZ (2014) Influence of ablated PTFE vapor entrainment on critical dielectric strength of hot SF6 gas. IEEE Trans Dielectr Electr Insul 21(4):1478–1485.

    CAS  Article  Google Scholar 

  9. 9.

    Zhong L, Rong MZ, Wang X, Wu J, Han Guiquan, Han Guohui, Yanhui Lu, Yang Aijun, Wu Y (2017) Compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2 as substitutes for SF6 to reduce global warming potential. AIP Adv 7:075003.

    CAS  Article  Google Scholar 

  10. 10.

    Wang WZ, Yan JD, Rong MZ, Murphy AB, Spencer JW (2013) Theoretical investigation of the decay of an SF6 gas-blast arc using a two-temperature hydrodynamic model. J Phys D Appl Phys 46:065203.

    CAS  Article  Google Scholar 

  11. 11.

    André P, Kohio N, Kagoné AK, Koalaga Z, Zougmoré F (2019) Contribution à l’étude de la conductivité thermique d’un plasma d’air. JITIPEE 5(2):3.

    Article  Google Scholar 

  12. 12.

    André P, Lefort A (1998) The influence of thermal disequilibrium on a plasma consisting of insulator vapours. J Phys D Appl Phys 31:717–729.

    Article  Google Scholar 

  13. 13.

    Annaloro J, Teulet P, Bultel A, Cressault Y, Gleizes A (2017) Non-uniqueness of the multi-temperature law of mass action. Application to 2T plasma composition calculation by means of a collisional-radiative model. Eur Phys J D 71:342.

    CAS  Article  Google Scholar 

  14. 14.

    Nichele S (2011) Modélisation Physique et Simulations Numériques des Ecoulements dans les Disjoncteurs Electriques Haute Tension. Ph.D. thesis from Université de Provence.

  15. 15.

    Aubreton J, Elchinger MF, André P (2013) Influence of partition function and interaction potential on transport properties of thermal plasmas. Plasma Chem Plasma Process 33:367–399.

    CAS  Article  Google Scholar 

  16. 16.

    JANAF (1998) Thermochemical tables, 4th edn. In: Chases MW (ed), Journal of physical and chemical reference data, vol 9

  17. 17.

    Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas. Plenum Press, New York

    Google Scholar 

  18. 18.

    André P, Bussière W, Rochette D (2007) Transport coefficients of Ag–SiO2 plasmas. PCPP 27:381–403.

    CAS  Article  Google Scholar 

  19. 19.

    Murphy AB (2000) Transport coefficients of hydrogen and argon–hydrogen plasmas. PCPP.

    Article  Google Scholar 

  20. 20.

    Bendjebbar F, André P, Benbakkar M, Rochette D, Flazi S, Vacher D (2012) Plasma formed in argon, acid nitric and water used in industrial ICP torches. Plasma Sci Technol 14(8):683–692.

    CAS  Article  Google Scholar 

  21. 21.

    Calvino BJ (1984) Single-pressure SF6 circuit breakers. In: Browne TE (ed), From the book “Circuit interruption. Theory and techniques”, New York, pp 377–424. ISBN: 0-8247-7177-X

  22. 22.

    Landau L, Lifchitz E (1984) Physique Statistique, vol 5, 3rd edn. Edition de Moscou/Éditions Mir (in French)

  23. 23.

    Preve C, Maladen R, Piccoz D (2016) Method for validation of new eco-friendly insulating gases for medium voltage equipment. In: IEEE international conference on dielectrics (ICD), no. 7547588, pp 235–240.

  24. 24.

    André P (1997) The influence of graphite on the composition and thermodynamic properties of plasma formed in ablated vapour of PMMA, PA6-6, PETP, POM and PE used in circuit-breakers. J Phys D Appl Phys 30:475–493.

    Article  Google Scholar 

Download references


This work was supported by a Grant of the French National Research Agency (ANR) as part of the “Investissement d’Avenir” Program (ANE-ITE-002-01).

Author information



Corresponding author

Correspondence to P. André.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

André-Maouhoub, E., André, P., Makhlouf, S. et al. Production of Graphite During the Extinguishing Arc with New SF6 Alternative Gases. Plasma Chem Plasma Process 40, 795–808 (2020).

Download citation


  • Graphite
  • SF6
  • CO2
  • Plasma
  • Novec™4710
  • Novec™5110
  • High voltage
  • Circuit breakers