Skip to main content
Log in

Synergistic Effect of Plasma Discharge and Substrate Temperature in Improving the Crystallization of \(\hbox {TiO}_2\) Film by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Three deposition modes of red atmospheric pressure plasma enhanced chemical vapor deposition were applied to study the influences of plasma discharge and the external substrate temperature on improving its crystallization: deposition in plasma red zone with post-heat annealing [Mode (a)], deposition outside plasma zone with a heated substrate [Mode (b)] and deposition inside plasma zone with a heated substrate [Mode (c)]. \(\hbox {TiO}_2\) film obtained with Mode (c) is anatase and the other two are amorphous. Four more substrate temperatures (100 \({^{\circ }}\)C, 200 \({^{\circ }}\)C, 300 \({^{\circ }}\)C, 400 \({^{\circ }}\)C) were investigated in Mode(c). The OES peaks of Ti excited atomic state shows out in Mode (c) and their intensity increases with the substrate temperature. The crystalline degree increases and the structure becomes more compact with the substrate temperature. The film obtained at 400 \({^{\circ }}\)C presented the highest photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shi JJ, Kong MG (2006) Phys Rev Lett 96:105009

  2. Mai-Prochnow A, Murphy AB, McLean KM, Kong MG, (Ken) Ostrikov K (2014) Int J Antimicrob Agents 43:508–517

    Article  CAS  PubMed  Google Scholar 

  3. Lisco F, Shaw A, Wright A, Walls JM, Iza F (2017) Solar Energy 146:287–297

    Article  CAS  Google Scholar 

  4. Jiang N, Hu J, Li J, Shang K, Lu N, Wu Y (2015) Appl Catal B: Environ 184:355–363

    Article  CAS  Google Scholar 

  5. Pekárek S, Mikeš J, Beshajovà I, Pelikánová F, Krčma P, Dzik (2016) Plasma Chem Plasma Process 36:1187–1200

    Article  CAS  Google Scholar 

  6. Massines F, Sarra-Bournet C, Fanelli F, Naudé N, Gherardi N (2012) Plasma Process Polym 9:1041–1073

    Article  CAS  Google Scholar 

  7. Klenko Y, Pichal J (2012) Plasma Chem Plasma Process 32:1215–1225

    Article  CAS  Google Scholar 

  8. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  CAS  Google Scholar 

  9. O’Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  10. Villatte G, Massard C, Descamps S, Sibaud Y, Forestier C, Awitor KO (2015) Int J Nanomed 10:3367–3375

    Article  CAS  Google Scholar 

  11. Sun Q, Xu Y (2010) J Phys Chem C 114:18911–18918

    Article  CAS  Google Scholar 

  12. Zhang X, Fujishima A, Jin M, Emeline AV, Murakami T (2006) J Phys Chem B 110:25142–25148

    Article  CAS  PubMed  Google Scholar 

  13. Maeda M, Watanabe T (2005) Thin Solid Films 489:320–324

    Article  CAS  Google Scholar 

  14. Zhou W, Zhong X, Wu X, Yuan L, Shu Q, Li W, Xia Y (2007) J Phys D: Appl Phys 40:219–226

    Article  CAS  Google Scholar 

  15. Chen Q, Liu Q, Hubert J, Huang W, Baert K, Wallaert G, Terryn H, Delplancke-Ogletree Marie-Paule, Reniers F (2017) Surf Coat Technol 310:173–179

    Article  CAS  Google Scholar 

  16. Collette S, Hubert J, Batan A, Baert K, Raes M, Vandendael I, Daniel A, Archambeau C, Terryn H, Reniers F (2016) Surf Coat Technol 289:172–178

    Article  CAS  Google Scholar 

  17. Di L, Shi C, Li X, Liu J, Zhu A (2012) Chem Vap Depos 18:309–314

    Article  CAS  Google Scholar 

  18. Bazinette Rémy, Paillol Jean, Lelièvre Jean-François, Massines Françoise (2016) Plasma Process. Polym. 13:1015–1024

    Article  CAS  Google Scholar 

  19. Wang D, Yang Q, Guo Y, Liu X, Shi J, Zhang J (2011) Mater Lett 65:2526–2529

    Article  CAS  Google Scholar 

  20. Gazal Y, Dublanche-Tixier C, Chazelas C, Colas M, Carles P, Tristant P (2016) Thin Soild Film 600:43–52

    Article  CAS  Google Scholar 

  21. Maurau R, Boscher ND, Olivier S, Bulou S, Belmonte T, Dutroncy J, Sindzingre T, Choquet P (2013) Surf Coat Technol 232:159–165

    Article  CAS  Google Scholar 

  22. Sarra-Bournet C, Charles C, Boswell R (2011) Surf Coat Technol 205:3939–3946

    Article  CAS  Google Scholar 

  23. Hodgkinson JL, Sheel DW (2013) Surf Coat Technol 230:73–76

    Article  CAS  Google Scholar 

  24. Busani T, Devine RAB (2008) Semicond Sci Technol 20:870–875

    Article  CAS  Google Scholar 

  25. Granier A, Begou T, Makaoui K, Soussou A, Gaviot Bruno Bêche E, Besland Marie-Paule, Goullet A (2009) Plasma Process Polym 6:S741–S745

    Article  CAS  Google Scholar 

  26. van Gessel B, Brandenburg R, Bruggeman P (2013) Appl Phys Lett 103:064103

    Article  CAS  Google Scholar 

  27. Gazal Y, Chazelas C, Dublanche-Tixier C, Tristant P (2017) J Appl Phys 121:123301

    Article  CAS  Google Scholar 

  28. Acayanka E, Djowe AT, Laminsi S, Tchoumkwè CC, Nzali S, Mbouopda AP, Ndifon PT, Gaigneaux EM (2013) Plasma Chem Plasma Process 33:725–735

    Article  CAS  Google Scholar 

  29. Zhang J, Li M, Feng Z, Chen J, Li C (2006) J Phys Chem B 110:927–935

    Article  CAS  PubMed  Google Scholar 

  30. Frenck HJ, Kulisch W, Kuhr M, Kassing R (1991) Thin Solid Films 201:327–335

    Article  CAS  Google Scholar 

  31. Yasuda H, Wang CR (1985) J Polym Sci Polym Chem Ed 23:87–106

    Article  CAS  Google Scholar 

  32. Smith Donald L (1995) Thin-film deposition Princiles and practice. McGraw-Hill, New York

    Google Scholar 

  33. Boumerzoug M, Pang Z, Boudreau M, Mascher P, Simmons JG (1995) Appl Phys Lett 66:302–304

    Article  CAS  Google Scholar 

  34. Forsberg P (1991) Physica Scripta 44:446–476

    Article  CAS  Google Scholar 

  35. Ding K, Lieberman MA, Lichtenberg AJ (2014) J Phys D Appl Phys 47:305203

    Article  CAS  Google Scholar 

  36. Ding K, Lieberman MA, Lichtenberg AJ, Shi JJ, Zhang J (2014) Plasma Sources Sci Technol 23:065048

    Article  CAS  Google Scholar 

  37. Norlén G (1973) Physica Scripta 8:249–268

    Article  Google Scholar 

  38. Seo HK, Elliott CM, Shin HS (2010) Appl Mater Interfaces 2(12):3397–3400

    Article  CAS  Google Scholar 

  39. Zhang XW, Han GR (2008) Thin Solid Films 516:6140–6144

    Article  CAS  Google Scholar 

  40. Xia B, Li W, Zhang B, Xie Y (1999) J Mater Sci 34:3505–3511

    Article  CAS  Google Scholar 

  41. Cordero T, Chovelon J, Duchamp C, Ferronato C, Matos J (2007) Appl Catal B Environ 73:227–235

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Nature Science Foundation of China (Nos. 10835004, 11375042, 11475043 and 11875104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, Y., Li, L. et al. Synergistic Effect of Plasma Discharge and Substrate Temperature in Improving the Crystallization of \(\hbox {TiO}_2\) Film by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition. Plasma Chem Plasma Process 39, 937–947 (2019). https://doi.org/10.1007/s11090-019-09961-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-09961-0

Keywords

Navigation