Skip to main content
Log in

Synthesis of Copper-Based Nanostructures in Liquid Environments by Means of a Non-equilibrium Atmospheric Pressure Nanopulsed Plasma Jet

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The influence of the liquid composition on the chemical and morphological properties of copper-based nanostructures synthesized by a non-equilibrium atmospheric plasma treatment is investigated and discussed. The synthesis approach is simple and environmentally friendly, employs a non-equilibrium nanopulsed atmospheric pressure plasma jet as a contactless cathode and a Cu foil as immersed anode. The process was studied using four distinct electrolyte solutions composed of distilled water and either NaCl + NaOH, NaCl only or NaOH only at two different concentrations, without the addition of any copper salts. CuO crystalline structures with limited impurities (e.g. Cu and Cu(OH)2 phases) were produced from NaCl + NaOH containing solutions, mainly CuO and CuCl2 structures were synthesized in the electrolyte solution containing only NaCl and no synthesis occurred in solutions containing only NaOH. Both aggregated and dispersed nanostructures were produced in the NaCl + NaOH and NaCl containing solutions. Reaction pathways leading to the formation of the nanostructures are proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Graves DB (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45:263001. https://doi.org/10.1088/0022-3727/45/26/263001

    Article  CAS  Google Scholar 

  2. Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D Appl Phys 42:053001. https://doi.org/10.1088/0022-3727/42/5/053001

    Article  CAS  Google Scholar 

  3. Wei-Hung C, Carolyn R, Sankaran RM (2010) Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase. Plasma Sources Sci Technol 19:34011. https://doi.org/10.1088/0963-0252/19/3/034011

    Article  CAS  Google Scholar 

  4. Patel J, Němcová L, Maguire P et al (2013) Synthesis of surfactant-free electrostatically stabilized gold nanoparticles by plasma-induced liquid chemistry. Nanotechnology 24:245604. https://doi.org/10.1088/0957-4484/24/24/245604

    Article  CAS  PubMed  Google Scholar 

  5. Du C, Xiao M (2014) Cu2O nanoparticles synthesis by microplasma. Sci Rep 4:7339. https://doi.org/10.1038/srep07339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mariotti D, Patel J, Svrcek V, Maguire P (2012) Plasma–liquid interactions at atmospheric pressure for nanomaterials synthesis and surface engineering. Plasma Process Polym 9:1074–1085. https://doi.org/10.1002/ppap.201200007

    Article  CAS  Google Scholar 

  7. Rumbach P, Bartels DM, Sankaran RM, Go DB (2015) The effect of air on solvated electron chemistry at a plasma/liquid interface. J Phys D Appl Phys 48:424001. https://doi.org/10.1088/0022-3727/48/42/424001

    Article  CAS  Google Scholar 

  8. Rumbach P, Witzke M, Sankaran RM, Go DB (2013) Decoupling interfacial reactions between plasmas and liquids: charge transfer vs plasma neutral reactions. J Am Chem Soc 135:16264–16267. https://doi.org/10.1021/ja407149y

    Article  CAS  PubMed  Google Scholar 

  9. Rumbach P, Griggs N, Sankaran RM, Go DB (2014) Visualization of electrolytic reactions at a plasma–liquid interface. IEEE Trans Plasma Sci 42:2610–2611. https://doi.org/10.1109/TPS.2014.2322976

    Article  CAS  Google Scholar 

  10. Mariotti D, Sankaran RM (2010) Microplasmas for nanomaterials synthesis. J Phys D Appl Phys 43:323001. https://doi.org/10.1088/0022-3727/43/32/323001

    Article  CAS  Google Scholar 

  11. Anžlovar A, Marinšek M, Orel ZC, Žigon M (2015) Basic zinc carbonate as a precursor in the solvothermal synthesis of nano-zinc oxide. Mater Des 86:347–353. https://doi.org/10.1016/j.matdes.2015.07.087

    Article  CAS  Google Scholar 

  12. Yu-Ping Z, Lee S-H, Reddy KR et al (2007) Synthesis and characterization of core–shell SiO2 nanoparticles/poly (3-aminophenylboronic acid) composites. J Appl Polym Sci 104:2743–2750. https://doi.org/10.1002/app

    Article  Google Scholar 

  13. Hassan M, Haque E, Reddy KR et al (2014) Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale 6:11988–11994. https://doi.org/10.1039/C4NR02365J

    Article  CAS  PubMed  Google Scholar 

  14. Tan C, Zhang H (2015) Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat Commun 6:7873. https://doi.org/10.1038/ncomms8873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reetz MT, Helbig W (1994) Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 116:7401–7402. https://doi.org/10.1021/ja00095a051

    Article  CAS  Google Scholar 

  16. Richmonds C, Sankaran RM (2008) Plasma–liquid electrochemistry: rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Appl Phys Lett 93:2013–2016. https://doi.org/10.1063/1.2988283

    Article  CAS  Google Scholar 

  17. Furuya K, Hirowatari Y, Ishioka T, Harata A (2007) Protective agent-free preparation of gold nanoplates and nanorods in aqueous HAuCl4 solutions using gas–liquid interface discharge. Chem Lett 36:1088–1089. https://doi.org/10.1246/cl.2007.1088

    Article  CAS  Google Scholar 

  18. Furusho H, Kitano K, Hamaguchi S, Nagasaki Y (2009) Preparation of stable water-dispersible PEGylated gold nanoparticles assisted by nonequilibrium atmospheric-pressure plasma jets. Chem Mater 21:3526–3535. https://doi.org/10.1021/cm803290b

    Article  CAS  Google Scholar 

  19. Hieda J, Saito N, Takai O (2008) Exotic shapes of gold nanoparticles synthesized using plasma in aqueous solution. J Vac Sci Technol A Vac Surf Film 26:854. https://doi.org/10.1116/1.2919139

    Article  CAS  Google Scholar 

  20. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:19. https://doi.org/10.1021/jp0107964

    Article  CAS  Google Scholar 

  21. Rogach AL (2000) Nanocrystalline CdTe and CdTe(S) particles: wet chemical preparation, size-dependent optical properties and perspectives of optoelectronic applications. Mater Sci Eng B Solid-State Mater Adv Technol 69:435–440. https://doi.org/10.1016/S0921-5107(99)00231-7

    Article  Google Scholar 

  22. Dierstein A, Natter H, Meyer F et al (2001) Electrochemical deposition under oxidizing conditions (EDOC): a new synthesis for nanocrystalline metal oxides. Scr Mater 44:2209–2212. https://doi.org/10.1016/S1359-6462(01)00906-X

    Article  CAS  Google Scholar 

  23. Chang S-S, Lee C-L, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664. https://doi.org/10.1021/jp971656q

    Article  Google Scholar 

  24. Wijesundera RP (2010) Fabrication of the CuO/Cu2O heterojunction using an electrodeposition technique for solar cell applications. Semicond Sci Technol 25:045015. https://doi.org/10.1088/0268-1242/25/4/045015

    Article  CAS  Google Scholar 

  25. Anandan S, Wen X, Yang S (2005) Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater Chem Phys 93:35–40. https://doi.org/10.1016/j.matchemphys.2005.02.002

    Article  CAS  Google Scholar 

  26. Sun H, Harms K, Sundermeyer J et al (2004) Aerobic oxidation of 2,3,6-trimethylphenol to trimethyl-1,4-benzoquinone with copper(II) chloride as catalyst in ionic liquid and structure of the active species. J Am Chem Soc 126:9550–9551

    Article  CAS  PubMed  Google Scholar 

  27. Rubilar O, Rai M, Tortella G et al (2013) Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol Lett 35:1365–1375

    Article  CAS  PubMed  Google Scholar 

  28. Boselli M, Colombo V, Ghedini E et al (2014) Schlieren high-speed imaging of a nanosecond pulsed atmospheric pressure non-equilibrium plasma jet. Plasma Chem Plasma Process 34:853–869. https://doi.org/10.1007/s11090-014-9537-1

    Article  CAS  Google Scholar 

  29. Colombo V, Fabiani D, Focarete ML et al (2014) Atmospheric pressure non-equilibrium plasma treatment to improve the electrospinnability of poly(L-Lactic Acid) polymeric solution. Plasma Process Polym 11:247–255. https://doi.org/10.1002/ppap.201300141

    Article  CAS  Google Scholar 

  30. Liguori A, Pollicino A, Stancampiano A et al (2016) Deposition of plasma-polymerized polyacrylic acid coatings by a non-equilibrium atmospheric pressure nanopulsed plasma jet. Plasma Process Polym 13:375–386. https://doi.org/10.1002/ppap.201500080

    Article  CAS  Google Scholar 

  31. Liguori A, Traldi E, Toccaceli E et al (2015) Co-deposition of plasma-polymerized polyacrylic acid and silver nanoparticles for the production of nanocomposite coatings using a non-equilibrium atmospheric pressure plasma jet. Plasma Process Polym. https://doi.org/10.1002/ppap.201500143

    Article  Google Scholar 

  32. Laurita R, Barbieri D, Gherardi M et al (2015) Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma. Clin Plasma Med 3:53–61. https://doi.org/10.1016/j.cpme.2015.10.001

    Article  Google Scholar 

  33. Faita G, Fiori G, Salvadore D (1975) Copper behaviour in acid and alkaline brines—I kinetics of anodic dissolution in 0.5 M NaCl and free-corrosion rates in the presence of oxygen. Corros Sci 15:383–392

    Article  CAS  Google Scholar 

  34. Yuan B, Wang C, Li L, Chen S (2009) Real time observation of the anodic dissolution of copper in NaCl solution with the digital holography. Electrochem Commun 11:1373–1376

    Article  CAS  Google Scholar 

  35. Kear G, Barker BD, Walsh FC (2004) Electrochemical corrosion of unalloyed copper in chloride media—a critical review. Corros Sci 46:109–135

    Article  CAS  Google Scholar 

  36. Ethiraj AS, Kang DJ (2012) Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res Lett 7:70. https://doi.org/10.1186/1556-276X-7-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Balamurugan B, Mehta BR (2001) Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation. Thin Solid Films 396:90–96. https://doi.org/10.1016/S0040-6090(01)01216-0

    Article  CAS  Google Scholar 

  38. Sun S, Zhang X, Sun Y et al (2013) Facile water-assisted synthesis of cupric oxide nanourchins and their application as nonenzymatic glucose biosensor. ACS Appl Mater Interfaces 5:4429–4437. https://doi.org/10.1021/am400858j

    Article  CAS  PubMed  Google Scholar 

  39. Borgohain K, Singh J, Rama Rao M et al (2000) Quantum size effects in CuO nanoparticles. Phys Rev B 61:11093–11096. https://doi.org/10.1103/PhysRevB.61.11093

    Article  CAS  Google Scholar 

  40. Vasquez RP, Foote MC, Hunt BD (1989) Reaction of nonaqueous halogen solutions with YBa2Cu3O7−x. J Appl Phys 66:4866–4877. https://doi.org/10.1063/1.343805

    Article  CAS  Google Scholar 

  41. Krylova V, Andrulevicius M (2009) Optical, XPS and XRD studies of semiconducting copper sulfide layers on a polyamide film. Int J Photoenergy. https://doi.org/10.1155/2009/304308

    Article  Google Scholar 

  42. Drogowska M, Brossard L, Menard H (1987) Anodic copper dissolution in the presence of Cl-ions at pH 12. Corrosion 43:549–552. https://doi.org/10.5006/1.3583899

    Article  CAS  Google Scholar 

  43. Engelbrekt C, Malcho P, Andersen J et al (2014) Selective synthesis of clinoatacamite Cu2(OH)3Cl and tenorite CuO nanoparticles by pH control. J Nanopart Res 16:2561. https://doi.org/10.1007/s11051-014-2562-4

    Article  CAS  Google Scholar 

  44. Wang W, Liu Z, Liu Y et al (2003) A simple wet-chemical synthesis and characterization of CuO nanorods. Appl Phys A Mater Sci Process 76:417–420. https://doi.org/10.1007/s00339-002-1514-5

    Article  CAS  Google Scholar 

  45. Cudennec Y, Lecerf A (2003) The transformation of Cu(OH)2 into CuO, revisited. Solid State Sci 5:1471–1474. https://doi.org/10.1016/j.solidstatesciences.2003.09.009

    Article  CAS  Google Scholar 

  46. Velusamy T, Liguori A, Macias-Montero M et al (2017) Ultra-small CuO nanoparticles with tailored energy-band diagram synthesized by a hybrid plasma–liquid process. Press Plasma Process Polym. https://doi.org/10.1002/ppap.201100001

    Article  Google Scholar 

  47. Guo TX, Zhao Y, Ma SC, Liu ST (2012) Decomposition characteristics of hydrogen peroxide in sodium hydroxide solution. Adv Mater Res 610:359–362. https://doi.org/10.4028/www.scientific.net/AMR.610-613.359

    Article  CAS  Google Scholar 

  48. Richardson HW (1997) Handbook of copper compounds and applications. CRC Press

  49. Witzke M, Rumbach P, Go DB, Sankaran RM (2012) Evidence for the electrolysis of water by atmospheric-pressure plasmas formed at the surface of aqueous solutions. J Phys D Appl Phys 45:442001. https://doi.org/10.1088/0022-3727/45/44/442001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the PLASMAT Project (Alma Mater Studiorum—Università di Bologna, FARB Grant) and by COST Action TD1208 Electrical Discharges with Liquids for Future Applications. The authors would like to acknowledge Prof. Vittorio Colombo, Prof. Maria Letizia Focarete and Prof. Catia Arbizzani for the fruitful scientific conversations. This work was also partially supported by EPSRC (Award n.EP/M024938/1 and n.EP/K022237/1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Liguori or Matteo Gherardi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liguori, A., Gallingani, T., Padmanaban, D.B. et al. Synthesis of Copper-Based Nanostructures in Liquid Environments by Means of a Non-equilibrium Atmospheric Pressure Nanopulsed Plasma Jet. Plasma Chem Plasma Process 38, 1209–1222 (2018). https://doi.org/10.1007/s11090-018-9924-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9924-0

Keywords

Navigation