Plasma Chemistry and Plasma Processing

, Volume 38, Issue 4, pp 771–790 | Cite as

Thermal Plasma Decomposition of Tetrachloroethylene

  • Péter Fazekas
  • Zsuzsanna Czégény
  • János Mink
  • Pál Tamás Szabó
  • Anna Mária Keszler
  • Eszter Bódis
  • Szilvia Klébert
  • János Szépvölgyi
  • Zoltán Károly
Original Paper


Tetrachloroethylene (C2Cl4) has been used widely as a solvent and dry cleaning agent, but was later specified as possible human carcinogen. As a result, its safe treatment became a priority. In this paper, we report on its decomposition in an atmospheric radiofrequency thermal plasma reactor. Main components of the exhaust gases were determined by Fourier transform infrared spectroscopy. We found that complete decomposition can be achieved in either oxidative or reductive conditions but not in neutral one. The solid soot product was characterised by transmission electron microscopy and specific surface area measurement. Organic compounds adsorbed on the surface of the soot were extracted by toluene and comprised, based on gas chromatography mass spectrometry, of various perchlorinated aliphatic (for example hexachlorocyclopentadiene) and aromatic compounds (like hexachlorobenzene, octachloronaphthalene or octachloroacenaphthylene). Several nitrogen containing molecules were also identified whose presence are rare during thermal plasma treatments. Further investigation of the extract by mass spectrometry revealed various higher molar mass chlorinated carbon clusters and two types of fullerenes (C60 and C70).


Tetrachloroethylene Thermal decomposition Radiofrequency thermal plasma Waste management 



The authors are grateful to Miklós Prodán and Gábor Babos for their technical assistance. Furthermore, we would like to thank Csaba Németh and Péter Németh for their contribution to the FT-IR and TEM measurements, respectively.


  1. 1.
    Boulos M, Fauchais P, Pfender E (1994) Thermal plasmas: fundamentals and applications. Plenum Press, New YorkCrossRefGoogle Scholar
  2. 2.
    Shih S-I, Lin T-C, Shih M (2004) Decomposition of benzene in the RF plasma environment, Part I. Formation of gaseous products and carbon depositions. J Hazard Mater 116:239–248CrossRefGoogle Scholar
  3. 3.
    Föglein KA, Babievskaya I, Szabó PT, Szépvölgyi J (2003) Recent studies on the decomposition of n-hexane and toluene in RF thermal plasma. Plasma Chem Plasma Process 23:233–243CrossRefGoogle Scholar
  4. 4.
    Fazekas P, Bódis E, Keszler AM, Czégény Zs, Klébert Sz, Károly Z, Szépvölgyi J (2013) Decomposition of chlorobenzene by thermal plasma processing. Plasma Chem Plasma Process 33:765–778CrossRefGoogle Scholar
  5. 5.
    Gudetti RR, Knight R, Grossmann ED (2000) Depolymerization of polyethylene using induction-coupled plasma technology. Plasma Chem Plasma Process 20:37–64CrossRefGoogle Scholar
  6. 6.
    Fazekas P, Czégény Zs, Mink J, Bódis E, Klébert Sz, Németh Cs, Keszler AM, Károly Z, Szépvölgyi J (2016) Decomposition of poly(vinyl chloride) in inductively coupled radiofrequency thermal plasma. Chem Eng J 302:163–171CrossRefGoogle Scholar
  7. 7.
    Föglein KA, Szabó PT, Babievskaya IZ, Szépvölgyi J (2005) Comparative study on the decomposition of chloroform in thermal and cold plasma. Plasma Chem Plasma Process 25:289–301CrossRefGoogle Scholar
  8. 8.
    Föglein KA, Szabó PT, Dombi A, Szépvölgyi J (2003) Comparative study of the decomposition of CCl4 in cold and thermal plasma. Plasma Chem Plasma Process 23:651–664CrossRefGoogle Scholar
  9. 9.
    Sun J-W, Park D-W (2003) CF4 decomposition by thermal plasma processing. Korean J Chem Eng 20:476–481CrossRefGoogle Scholar
  10. 10.
    Föglein KA, Szépvölgyi J, Szabó PT, Mészáros E, Pekker-Jakab E, Babievskaya IZ, Mohai I, Károly Z (2005) Comparative study on decomposition of CFCl3 in thermal and cold plasma. Plasma Chem Plasma Process 25:275–288CrossRefGoogle Scholar
  11. 11.
    Lee W-J, Chen C-Y, Lin W-C, Wang Y-T, Chin C-J (1996) Phosgene formation from the decomposition of 1,1-C2H2Cl2 contained gas in an RF plasma reactor. J Hazard Mater 48:51–67CrossRefGoogle Scholar
  12. 12.
    Roda C, Kousignian I, Ramond A, Momas I (2013) Indoor tetrachloroethylene levels and determinants in Paris dwellings. Environ Res 120:1–6CrossRefGoogle Scholar
  13. 13.
    Chiappini L, Delery L, Leoz-Garziandia E, Brouard B, Fagault Y (2009) A first French assessment of population exposure to tetrachloroethylene from small dry cleaning facilities. Indoor Air 19:226–233CrossRefGoogle Scholar
  14. 14.
    WHO (World Health Organization) (2010) Tetrachloroethylene. WHO guidelines for indoor air quality: selected pollutants, pp 415–454Google Scholar
  15. 15.
    Wexler P (2014): Encyclopedia of toxicology, 3rd edn (editor-in-chief). Elsevier, AmsterdamGoogle Scholar
  16. 16.
    Chang C-H, Yang H-Y, Hung J-M, Lu C-J, Liu M-H (2017) Simulation of combined anaerobic/aerobic bioremediation of tetrachloroethylene in groundwater by a column system. Int Biodeterior Biodegrad 117:150–157CrossRefGoogle Scholar
  17. 17.
    Yasuhara A (1993) Thermal decomposition of tetrachloroethylene. Chemosphere 26:1507–1512CrossRefGoogle Scholar
  18. 18.
    Tirey DA, Taylor PH, Kasner J, Dellinger B (1990) Gas phase formation of chlorinated aromatic compounds from the pyrolysis of tetrachloroethylene. Combust Sci Technol 74:137–157CrossRefGoogle Scholar
  19. 19.
    Won Y-S (2009) Thermal decomposition of tetrachloroethylene with excess hydrogen. J Ind Eng Chem 15:510–515CrossRefGoogle Scholar
  20. 20.
    Kramida A, Ralchenko Y, Reader J (2016) NIST Atomic Spectra Database (Version 5.4)—National Institute of Standards and Technology, Gaithersburg.
  21. 21.
    FactSage 2016: Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Gheribi AE, Hack K, Jung I-H, Kang Y-B, Melançon J, Pelton AD, Petersen S, Robelin C, Sangster J, Spencer P, Van Ende M-A (2016) FactSage thermochemical software and databases 2010–2016. Calphad 54:35–53Google Scholar
  22. 22.
    Cota-Sanchez G, Soucy G, Huczko A, Lange H (2005) Induction plasma synthesis of fullerenes and nanotubes using carbon black-nickel particles. Carbon 43:3153–3166CrossRefGoogle Scholar
  23. 23.
    Jamroz P, Zyrnicki W (2010) Optical emission spectroscopy study for nitrogen–acetylene–argon and nitrogen–acetylene–helium 100 kHz and DC discharges. Vacuum 84:940–946CrossRefGoogle Scholar
  24. 24.
    Yugeswaran S, Selvaranjan V (2006) Electron number density measurements on a DC argon plasma jet by stark broadening of Ar I spectral line. Vacuum 81:347–352CrossRefGoogle Scholar
  25. 25.
    Bussiere W, Vacher D, Menecier S, André P (2011) Comparative study of an argon plasma and an argon copper plasma produced by an ICP torch at atmospheric pressure based on spectroscopic methods. Plasma Sources Sci Technol 20:1–23CrossRefGoogle Scholar
  26. 26.
    Hornkohl JO, Parigger CG, Lewis JWL (1991) Temperature measurements from CN spectra in a laser induced plasma. J Quant Spectrosc Radiat Transf 46:405–411CrossRefGoogle Scholar
  27. 27.
    Parigger CG, Plemmons DH, Hornkohl JO, Lewis JWL (1994) Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system. J Quant Spectrosc Radiat Transf 52:707–711CrossRefGoogle Scholar
  28. 28.
    Choi KN, Barker EF (1932) Infrared absorption spectrum of hydrogen cyanide. Phys Rev 42:777–785CrossRefGoogle Scholar
  29. 29.
    Mann DE, Acquista N, Plyer EK (1954) Vibrational spectra of tetraflouroethylene and tetrachloroethylene. J Res Natl Bureau Stand 52:67–72CrossRefGoogle Scholar
  30. 30.
    Jones LH, Ryan RR, Asprey LB (1968) Vibrational spectra and force constants for isotopic species of nitrosyl chloride. J Chem Phys 49:581–585CrossRefGoogle Scholar
  31. 31.
    Shornikova ON, Kogan EV, Sorokina NE, Avdeev VV (2009) The specific surface area and porous structure of graphite materials. Russ J Phys Chem A 83:1022–1025CrossRefGoogle Scholar
  32. 32.
    Rodat S, Abanades S, Grivei E, Patrianakos G, Zygogianni A, Konstandopoulos AG, Flamant G (2011) Characterization of carbon black produced by solar thermal dissociation methane. Carbon 49:3084–3091CrossRefGoogle Scholar
  33. 33.
    Harbec D, Meunier J-L, Guo L, Gauvin R, El Mallah N (2004) Carbon nanotubes from the dissociation of C2Cl4 using a dc thermal plasma torch. J Phys D Appl Phys 37:2121–2126CrossRefGoogle Scholar
  34. 34.
    Harbec D, Meunier J-L, Gou L, Jureidini J (2007) A parametric study of carbon nanotubes production from tetrachloroethylene using a supersonic thermal plasma jet. Carbon 45:2054–2064CrossRefGoogle Scholar
  35. 35.
    Colomer J-F, Piedigrosso P, Willems I, Journet C, Bernier P, Van Tendeloo G, Fonseca A, Nagy JB (1998) Purification of catalytically produced multi-walled nanotubes. J Chem Soc Faraday Trans 94:3753–3758CrossRefGoogle Scholar
  36. 36.
    Fazekas P, Keszler AM, Bódis E, Drotár E, Klébert Sz, Károly Z, Szépvölgyi J (2015) Optical emission spectra analysis of thermal plasma treatment of of poly(vinyl chloride). Open Chem 13:549–556Google Scholar
  37. 37.
    Eiceman GA, Hoffman RV, Collins MC, Long Y-T, Lu M-Q (1990) Chlorine substitution reactions of polycyclic aromatic hydrocarbons on fly ash from coal-fired power plants. Chemosphere 21:35–41CrossRefGoogle Scholar
  38. 38.
    Alexakis T, Tsantrizos PG, Tsantrizos YS, Meunier L-S (1997) Synthesis of fullerenesvie the thermal dissociation of hydrocarbons. Appl Phys Lett 70:2102–2104CrossRefGoogle Scholar
  39. 39.
    Gao F, Xie S-Y, Ma Z-J, Feng Y-Q, Huang R-B, Zheng L-S (2004) The graphite arc-discharge in the presence of CCl4: chlorinated carbon clusters in relation with fullerenes formation. Carbon 42:1959–1963CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Péter Fazekas
    • 1
  • Zsuzsanna Czégény
    • 1
  • János Mink
    • 1
  • Pál Tamás Szabó
    • 2
  • Anna Mária Keszler
    • 1
  • Eszter Bódis
    • 1
  • Szilvia Klébert
    • 1
  • János Szépvölgyi
    • 1
  • Zoltán Károly
    • 1
  1. 1.Institute of Materials and Environmental Chemistry, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
  2. 2.MS Metabolomics Laboratory, Core Facility, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary

Personalised recommendations