Advertisement

Plasma Chemistry and Plasma Processing

, Volume 38, Issue 3, pp 535–556 | Cite as

Characterization of an Air-Based Coaxial Dielectric Barrier Discharge Plasma Source for Biofilm Eradication

  • Juliana Soler-Arango
  • Graciela Brelles-Mariño
  • Antonio Rodero
  • Maria C. Garcia
Original Paper
  • 114 Downloads

Abstract

Air-based atmospheric-pressure cold plasmas are a source of charged particles, excited species, radicals, and UV rays, known to induce degradation of biomaterials. In this work we characterize an air-based Dielectric Barrier Discharge plasma source designed for biofilm eradication, and study plasmas generated under different conditions by Optical Emission Spectroscopy. The main excited species in air-based plasmas are N2 (C3Πu) molecules and the gas temperatures never exceed 335 K, decreasing as air amounts increase in the feeding gas. Excited oxygen atoms and OH species are only detected in discharges generated in argon-containing gases. The temperature of the effluent remains below 308 K. Air-based plasmas are useful for biofilm eradication as they produce high amounts of ozone at a low gas temperature.

Keywords

Atmospheric plasmas Biofilm eradication Cold plasmas Gas temperature Optical emission spectroscopy 

Notes

Acknowledgements

Authors thank the European Regional Development Funds program (EU-FEDER) and the MINECO (Project MAT2016-79866-R) for financial support. Authors are also grateful to the Física de Plasmas: Diagnosis, Modelos y Aplicaciones (FQM 136) research group of Regional Government of Andalusia for technical and financial support. Authors also acknowledge Prof. Lourdes Arce for her scientific and technical support with ozone determination. Authors acknowledge Dr. Diana Grondona and Dr. Leandro Giuliani (INFIP, UBA-CONICET) for providing the plasma device and Dr. Manuel Torres for his technical support. Juliana Soler-Arango is indebted to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, and Asociación Universitaria Iberoamericana de Posgrado (AUIP), Spain, for fellowships.

References

  1. 1.
    Weltmann KD, von Woedtke T (2016) Plasma Phys Control Fusion 59:014031CrossRefGoogle Scholar
  2. 2.
    Gay-Mimbrera J, García MC, Isla-Tejera B, Rodero-Serrano A, Vélez García-Nieto A, Ruano J (2016) Adv Ther 33:894–909CrossRefGoogle Scholar
  3. 3.
    Stoffels E, Roks AJM, Deelman LE (2008) Plasma Process Polym 5:599–605CrossRefGoogle Scholar
  4. 4.
    Barekzi N, Laroussi M (2013) Plasma Process Polym 10:1039–1050CrossRefGoogle Scholar
  5. 5.
    Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Plasma Process Polym 5:503–533CrossRefGoogle Scholar
  6. 6.
    von Woedtke Th, Reuter S, Masur K, Weltmann KD (2013) Phys Rep 530:291–320CrossRefGoogle Scholar
  7. 7.
    Graves DB (2012) J Phys D Appl Phys 18:263001CrossRefGoogle Scholar
  8. 8.
    Menashi WP (1968) US Patent 3.383.163Google Scholar
  9. 9.
    Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia LH (2001) Int J Pharm 226:1–21CrossRefGoogle Scholar
  10. 10.
    Laroussi M (2002) IEEE Trans Plasma Sci 30:1409–1415CrossRefGoogle Scholar
  11. 11.
    Farr SB, Kogoma T (1991) Microbiol Rev 55:561–585Google Scholar
  12. 12.
    Poole RK (2005) Biochem Soc Trans 33:176–180CrossRefGoogle Scholar
  13. 13.
    Brelles-Mariño G (2012) J Bioprocess Biotech 2:4Google Scholar
  14. 14.
    Brandenburg R (2017) Plasma Sources Sci Technol 26:053001CrossRefGoogle Scholar
  15. 15.
    Abramzon N, Joaquin JC, Bray JD, Brelles-Mariño G (2006) IEEE Trans Plasma Sci 34:1304–1309CrossRefGoogle Scholar
  16. 16.
    Becker K, Koutsospyros A, Yin SM, Christodoulatos C, Abramzon N, Joaquin JC, Brelles-Mariño G (2005) Plasma Phys Control Fusion 47:B513–B523CrossRefGoogle Scholar
  17. 17.
    Joaquin J, Kwan C, Abramzon N, Vandervoort K, Brelles-Mariño G (2009) Microbiology 17:724–732CrossRefGoogle Scholar
  18. 18.
    Zelaya A, Stough G, Rad N, Vandervoort K, Brelles-Mariño G (2010) IEEE Trans Plasma Sci 38:3398–3403CrossRefGoogle Scholar
  19. 19.
    Zelaya A, Vandervoort K, Brelles-Mariño G (2012) In: Machala Z, Hensel K, Akishev Y (eds) Plasma for bio-decontamination, medicine and food security. NATO science for peace and security series A. Springer, Dordrecht (Chapter 11) Google Scholar
  20. 20.
    Vandervoort KG, Brelles-Mariño G (2014) PLoS ONE 9:e108512CrossRefGoogle Scholar
  21. 21.
    Soler-Arango J, Xaubet M, Giuliani L, Grondona D, Brelles-Mariño G (2017) Plasma Med 7:43–63CrossRefGoogle Scholar
  22. 22.
    Pearse RWB, Gaydon AG (1963) The identification of molecular spectra, 3rd edn. Wiley, HobokenGoogle Scholar
  23. 23.
    Kogelschatz U (2003) Plasma Chem Plasma Process 23:1–46CrossRefGoogle Scholar
  24. 24.
    Kramida A, Ralchenko Y, Reader J (2016) NIST ASD Team NIST Atomic Spectra Database (version 5.4) (Online). National Institute of Standards and Technology, Gaithersburg, MD. http://physics.nist.gov/asd. Accessed 12 Jan 2017
  25. 25.
    Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K (2016) Phys Rep 630:1–84CrossRefGoogle Scholar
  26. 26.
    Sankaranarayanan R, Pashaie B, Dhali SK (2000) Appl Phys Lett 77:2970–2972CrossRefGoogle Scholar
  27. 27.
    Li L, Nikiforov A, Xiong Q, Britun N, Snyders R, Lu X, Leys C (2013) Phys Plasmas 20:093502CrossRefGoogle Scholar
  28. 28.
    Yu QS, Yasuda HK (1998) Plasma Chem Plasma Process 18:461–485CrossRefGoogle Scholar
  29. 29.
    Britun N, Gaillard M, Ricard A, Kim YM, Kim KS, Han JG (2007) J Phys D Appl Phys 40:1022–1029CrossRefGoogle Scholar
  30. 30.
    García MC, Varo M, Martínez P (2010) Plasma Chem Plasma Process 3:241–255CrossRefGoogle Scholar
  31. 31.
    Voráč J, Synek P, Potočňáková L, Hnilica J, Kudrle V (2017) Plasma Sources Sci Technol 26:025010CrossRefGoogle Scholar
  32. 32.
    Voráč J, Synek P, Procházka V, Hoder T (2017) J Phys D Appl Phys 50:294002CrossRefGoogle Scholar
  33. 33.
    Rodero A, García MC (2017) J Quant Spectrosc Radiat Transf 198:93–103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Research and Development on Industrial Fermentations, Consejo Nacional de Investigaciones Científicas y Técnicas (CINDEFI, CCT-LA PLATA-CONICET), Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Department of PhysicsUniversity of CordobaCórdobaSpain
  3. 3.Department of Applied PhysicsUniversity of CordobaCórdobaSpain

Personalised recommendations