Plasma Chemistry and Plasma Processing

, Volume 38, Issue 2, pp 443–459 | Cite as

Non-linear Compensated Dwell Time for Efficient Fused Silica Surface Figuring Using Inductively Coupled Plasma

  • Zuocai Dai
  • Xuhui Xie
  • Heng Chen
  • Lin Zhou
Original Paper


Atmospheric plasma etching has been increasingly applied in the fabrication of optical elements for high efficiency and near-zero damage to optical surfaces. However, the non-linearity of material removal rate is inevitable because of the thermal effect of inductively coupled plasma (ICP) etching for fused silica. To apply ICP to figure fused silica surface, the time-varying non-linearity between material removal rate and dwell time is analyzed. An experimental model of removal function is established considering the time-varying non-linearity. According to this model, an algorithm based on nested pulsed iterative method is proposed for calculating and compensating this time-varying non-linearity by varying the dwell time. Simulation results show that this algorithm can calculate and adjust the dwell time accurately and remove surface errors with rapid convergence. Surface figuring experiments were set up on the fused silica planar work-pieces with a size of 100 mm (width) × 100 mm (length) × 10 mm (thickness). With the compensated dwell time, the surface error converges rapidly from 4.556 λ PV (peak-to-valley) to 0.839 λ PV within 13.2 min in one iterative figuring. The power spectral density analysis indicates that the spatial frequency errors between 0.01 and 0.04 mm−1 are smoothed efficiently, and the spatial frequency errors between 0.04 and 0.972 mm−1 are also corrected. Experimental results demonstrate that the ICP surface figuring can achieve high convergence for surface error reduction using the compensated dwell time. Therefore, the ICP surface figuring can greatly improve surface quality and machining efficiency for fused silica optical elements.


Inductively coupled plasma Fused silica Material removal rate Time-varying non-linearity Surface figuring 



This research work was supported by the project “Program for New Century Excellent Talents in University (NCET) (No. 130165)”.


  1. 1.
    Li N, Wang B, Jin H (2014) Harbin Inst Technol 21(5):124–128Google Scholar
  2. 2.
    Wang Z, Wu Y, Dai Y (2007) Aviat Precis Manuf Technol 43(5):1–5Google Scholar
  3. 3.
    Nie X, Li S, Dai Y, Song C (2013) Proc SPIE Int Soc Opt Eng 8786(22):11306–11312Google Scholar
  4. 4.
    Shen J, Liu S, Yi K, He H, Shao J, Fan Z (2005) Optik Int J Light Electron Opt 116(6):288–294CrossRefGoogle Scholar
  5. 5.
    Wang Y, Hang L, Hu M (2008) Surf Technol 37(1):51–53Google Scholar
  6. 6.
    Meister J, Arnold T (2011) Plasma Chem Plasma Process 31:91–107CrossRefGoogle Scholar
  7. 7.
    Mori Y, Yamamura K, Sano Y (2000) Rev Sci Instrum 71(12):4620–4626CrossRefGoogle Scholar
  8. 8.
    Takino H, Yamamura K, Sano Y, Mori Y (2010) Appl Opt 49:4434–4440CrossRefGoogle Scholar
  9. 9.
    Eichentopf I-M, Böhm G, Meister J, Arnold T (2010) Plasma Process Polym 6(S10):S204–S208Google Scholar
  10. 10.
    Arnold T, Böhm G, Fechner R, Meister J, Nickel A, Frost F, Hansel T, Schindler A (2010) Nucl Instrum Methods Phys Res A 616:147–156CrossRefGoogle Scholar
  11. 11.
    Arnold T, Böhm G (2012) Precis Eng 36(4):546–553CrossRefGoogle Scholar
  12. 12.
    Eichentopf I-M, Böhm G, Arnold T (2011) Surf Coat Technol 205(205):S430–S434CrossRefGoogle Scholar
  13. 13.
    Fanara C, Shore P, Nicholls J-R, Lyford N, Sommer P, Fiske P (2006) SPIE Astron Telesc Instrum Int Soc Opt Photonics 10:933–939Google Scholar
  14. 14.
    Jourdain R, Castelli M, Shore P, Sommer P, Proscia D (2013) Prod Eng Res Devel 7:665–673CrossRefGoogle Scholar
  15. 15.
    Zhang J, Wang B, Dong S (2008) Int J Precis Eng Manuf 9(2):39–43Google Scholar
  16. 16.
    Jia G, Li B, Zhang J (2016) Mater Sci Forum 878:83–88CrossRefGoogle Scholar
  17. 17.
    Shi B, Dai Y, Xie X, Li S, Zhou L (2016) Plasma Chem Plasma Process 36(3):1–10Google Scholar
  18. 18.
    Shi B, Xie X, Dai Y, Liao C (2014) Proc SPIE 9281:928104CrossRefGoogle Scholar
  19. 19.
    Greenfield S, Jones I (1964) Analyst 89(1064):713–720CrossRefGoogle Scholar
  20. 20.
    Castelli M, Jourdain R, Morantz P, Shore P (2012) Proc SPIE Int Soc Opt Eng 8450:34Google Scholar
  21. 21.
    Wendt R, Fassel V (1965) Anal Chem 37(7):920–922CrossRefGoogle Scholar
  22. 22.
    Castelli M, Jourdain R, Morantz P, Shore P (2012) Precis Eng 36(3):467–476CrossRefGoogle Scholar
  23. 23.
    Liao W, Dai Y, Xie X (2014) Opt Eng 53(9):095101CrossRefGoogle Scholar
  24. 24.
    Arnold T, Böhm G, Paetzelt H (2016) Nonconventional ultra-precision manufacturing of ULE mirror surfaces using atmospheric reactive plasma jets. In: SPIE astronomical telescopes and instrumentation, p 99123NGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zuocai Dai
    • 1
    • 2
  • Xuhui Xie
    • 1
    • 2
  • Heng Chen
    • 1
    • 2
  • Lin Zhou
    • 1
    • 2
  1. 1.College of Mechatronics Engineering and AutomationNational University of Defense TechnologyChangshaChina
  2. 2.Hu’nan Key Laboratory of Ultra-precision Machining TechnologyChangshaChina

Personalised recommendations