Advertisement

Plasma Chemistry and Plasma Processing

, Volume 38, Issue 2, pp 415–428 | Cite as

Physico-Chemical Processes Induced by Electrical Breakdown and Discharge Responsible for Memory Effect in Krypton with < 10 ppm Nitrogen

  • Milić M. Pejović
  • Momčilo M. Pejović
  • Koviljka Stanković
Original Paper
  • 47 Downloads

Abstract

In order to analyze the processes induced by electrical breakdown and discharge responsible for memory effect in krypton-filled tube at low pressure, experimental data mean value of electrical breakdown time delay \(\bar{t}_{d}\) as a function of afterglow period τ (memory curve) was used. Analysis showed that in the 1 μs < τ < 7 ms interval positive ions formed in the previous discharge and in afterglow have a dominant role in secondary emission of electrons from the cathode which lead to initiation of breakdown. In the 7 ms < τ < 30 s interval N(4S) atoms have a dominant role in secondary electron emission. These atoms are formed during breakdown and discharge by dissociation of nitrogen molecules that are presented as impurities in krypton. For τ > 30 s the concentration of N(4S) atoms decreases significantly so that the dominant role in initiation of breakdown is taken over by cosmic rays and natural radioactivity. The increase in discharge current leads to the decrease in \(\bar{t}_{d}\) in the 1 μs < τ < 7 ms interval due to the increase in positive ion concentration. The increase in applied voltage decreases the values of \(\bar{t}_{d}\) for τ > 7 ms due to the increase in probability for breakdown. It has also been show that exposure of krypton-filled tube to low dose of gamma ray irradiation as well as UV irradiation with wavelength higher than 300 nm leads to the decrease in \(\bar{t}_{d}\). This decrease occurs for τ > 7 ms, when N(4S) atoms play a dominant role in breakdown initiation.

Keywords

Electrical breakdown time delay Breakdown voltage Afterglow period Secondary electron emission Krypton Nitrogen 

Notes

Acknowledgements

The work presented in this paper was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia under the Contract No. 171007.

References

  1. 1.
    Boeuf JP (2003) Plasma display panels: physics, recent developments and key issues. J Phys D Appl Phys 36:R53–R75CrossRefGoogle Scholar
  2. 2.
    Gnybida M, Uhrlandt D, Loffhangen D (2012) J Phys D Appl Phys 45:195203CrossRefGoogle Scholar
  3. 3.
    Treshchalov AB, Lissovski AA (2009) J Phys D Appl Phys 42:245203CrossRefGoogle Scholar
  4. 4.
    Kane DM, Hirschausen DH, Ward BK, Carmen RJ, Mildren RP (2004) Proc SPIE 5399:100CrossRefGoogle Scholar
  5. 5.
    Shiga T, Mikoshiba S, Shinada S (2001) Electr Commun Jpn 84:55CrossRefGoogle Scholar
  6. 6.
    Zhang JY, Boyd IW (1996) J Appl Phys 80:633CrossRefGoogle Scholar
  7. 7.
    Oppenlander T (2007) J Environ Eng Sci 6:525CrossRefGoogle Scholar
  8. 8.
    Bofford JB, Jung RO, Lin CC, Wendt AE (2009) Plasma Source Sci Technol 18:035017CrossRefGoogle Scholar
  9. 9.
    Sobota A, Gendre MF, Menders F, van Veldhuizen EM, Haverlag M (2011) J Phys D Appl Phys 44:155205CrossRefGoogle Scholar
  10. 10.
    Becker J, Manders F, Aben PCH, Stoffels WW, Haverlag M (2008) J Phys D Appl Phys 41:144028CrossRefGoogle Scholar
  11. 11.
    Lerouge S, Fozza AC, Wertheimer MR, Marchand R, Yahia LH (2000) Plasmas Polim 5:31CrossRefGoogle Scholar
  12. 12.
    Knoll AJ, Luan P, Bartis EAJ, Hart C, Raitses Y, Oehrlein GS (2014) Appl Phys Lett 105:171601CrossRefGoogle Scholar
  13. 13.
    Korolev Yu (2015) Russ J Gen Chem 85:1311CrossRefGoogle Scholar
  14. 14.
    Winter J, Branderburg R, Weltmann KD (2015) Plasma Sources Sci Technol 24:064001CrossRefGoogle Scholar
  15. 15.
    Engelhardt M, Kartaschew K, Bibinov N, Havenith M, Awakowicz P (2017) J Phys D Appl Phys 50:015206CrossRefGoogle Scholar
  16. 16.
    Bagcivan N, Bobzin K, Theiss S (2013) Thin Solid Films 528:180CrossRefGoogle Scholar
  17. 17.
    Bobzin K, Bogcivan N, Theiss S, Brugnara R, Bibinov N, Awakowiez P (2017) J Phys D Appl Phys 50:075203CrossRefGoogle Scholar
  18. 18.
    Donnelly VM (2004) J Phys D Appl Phys 37:R-217CrossRefGoogle Scholar
  19. 19.
    Mariotti D, Shimizu Y, Sasaki T, Koshizaki N (2006) Appl Phys Lett 89:201502CrossRefGoogle Scholar
  20. 20.
    Lee YK, Hawang KT, Lee MH, Chung CW (2008) J Korean Phys Soc 52:1792CrossRefGoogle Scholar
  21. 21.
    Miller PA, Hebner GA, Jarecki RL Jr, Ni T (1998) J Vac Sci Technol A 16:3240CrossRefGoogle Scholar
  22. 22.
    Gavare Z, Gott D, Pipa J, Ropcke J, Skudra A (2006) Plasma Source Sci Technol 15:391CrossRefGoogle Scholar
  23. 23.
    Santiago I, Calzada MD (2007) Appl Spectrosc 61:725CrossRefGoogle Scholar
  24. 24.
    Schulze M, Yanguas-Gil M, von Keudell A, Awakowicz P (2008) J Phys D Appl Phys 41:062506Google Scholar
  25. 25.
    Hebner GA (1996) J Appl Phys 80:2624CrossRefGoogle Scholar
  26. 26.
    Leanhardt D, Eddy CR Jr, Shamamian VA, Fernsler RF, Butler JE (1998) J Appl Phys 83:2971CrossRefGoogle Scholar
  27. 27.
    Clarenback B, Lorenz B, Kramer M, Sadeghi N (2003) Plasma Sources Sci Technol 12:345CrossRefGoogle Scholar
  28. 28.
    O’Connell D, Gans T, Crintea DL, Czarnetzki U, Sadeghi N (2008) J Phys D Appl Phys 41:035208CrossRefGoogle Scholar
  29. 29.
    Hart LP, Smith BW, Omenetto N (1986) Spectrochim Acta B 41:1367CrossRefGoogle Scholar
  30. 30.
    Andrew Y, Abraham I, Booske JH, Lu ZC, Wendt AE (2000) J Appl Phys 88:3208CrossRefGoogle Scholar
  31. 31.
    Pejovic MM, Ristic GS, Karamarkovic JP (2002) J. Phys. D: Appl. Phys. 35:R-91CrossRefGoogle Scholar
  32. 32.
    Nesic NT, Pejovic MM, Pejovic MM, Zivanovic EN (2011) J Phys D Appl Phys 44:095203CrossRefGoogle Scholar
  33. 33.
    Pejovic MM, Spasic IV, Pejovic MM, Nesic NT, Brajevic DV (2013) J Plasma Phys 75:641CrossRefGoogle Scholar
  34. 34.
    Pejovic MM, Ristic GS, Milosavljevic CS, Pejovic MM (2002) J Phys D Appl Phys 35:2536CrossRefGoogle Scholar
  35. 35.
    Pejovic MM, Pejovic MM (2005) Plasma Sources Sci Technol 14:429CrossRefGoogle Scholar
  36. 36.
    Pejovic MM, Karamarkovic JP, Ristic GS, Pejovic MM (2008) Phys Plasmas 15:013502CrossRefGoogle Scholar
  37. 37.
    Pejovic MM, Milosavljevic CS, Pejovic MM (2003) Rev Scient Instr 74:3127CrossRefGoogle Scholar
  38. 38.
    Pejovic MM, Denic DB, Pejovic MM, Nesic NT, Vasovic N (2010) Rev Scient Instr 81:105104CrossRefGoogle Scholar
  39. 39.
    Pejovic MM, Nesic NT, Pejovic MM (2014) Phys Plasmas 21:042111CrossRefGoogle Scholar
  40. 40.
    Pejovic MM, Ristic GS, Petrovic ZL (1999) J Phys D Appl 32:1489CrossRefGoogle Scholar
  41. 41.
    Meek JM, Craggs JD (1978) Electrical breakdown of gases. Wiley, New YorkGoogle Scholar
  42. 42.
    Pejovic MM, Zivanovic EN, Pejovic MM, Nesic NT, Kovacevic D (2012) Vacuum 86:1860CrossRefGoogle Scholar
  43. 43.
    Maluckov CA, Karamarkovic JP, Radovic MK, Pejovic MM (2006) Phys Plasmas 13:083502CrossRefGoogle Scholar
  44. 44.
    Gregorio J, Aubert X, Hahelaar GJM, Puech V, Pitchford LC (2014) Plasma Sources Sci Technol 23:015005CrossRefGoogle Scholar
  45. 45.
    Eckstrom DJ, Nacano HH, Lorents DC, Rothem T, Betts JA, Loinhart ME, Triebes KJ, Dokin D (1988) J Appl Phys 64:1691CrossRefGoogle Scholar
  46. 46.
    Shiu YJ, Biondi MA (1977) Phys Rev A 16:1817CrossRefGoogle Scholar
  47. 47.
    Pejovic MM, Mijovic BJ, Bosan DA (1983) J Phys D Appl Phys 16:L149CrossRefGoogle Scholar
  48. 48.
    Pejovic MM, Ristic GS (2000) J Phys D Appl Phys 33:2786CrossRefGoogle Scholar
  49. 49.
    Markovic VL, Gocic SR, Stamenkovic SN (2007) Phys Plasmas 14:103504CrossRefGoogle Scholar
  50. 50.
    Berkowitz J, Chupka WA, Kistiakowsky GB (1956) J Chem Phys 25:457CrossRefGoogle Scholar
  51. 51.
    Ernest AD (1991) Ph.D. Thesis, University of New EnglandGoogle Scholar
  52. 52.
    Pejovic MM, Nesic NT, Pejovic MM, Brajovic DV (2012) Phys Plasmas 19:123512CrossRefGoogle Scholar
  53. 53.
    Markovic ZL, Petrovic ZL, Pejovic MM (1994) J. Chem. Phys. 11:8514CrossRefGoogle Scholar
  54. 54.
    Brovikova I, Galiaskarov E (2001) High Temp 39:809CrossRefGoogle Scholar
  55. 55.
    Alves LL, Marques L, Pintassilgo CD, Wattieaux G, Et Es-sebbar, Berndt J, Kovacevic P, Carrasco N, Boufendi L, Cernogora G (2012) Plasma Sources Sci Technol 21:045008CrossRefGoogle Scholar
  56. 56.
    Lebedev Yu, Mavludov TB, Epstein IL, Chvyreva AV, Tatarinov AV (2012) Plasma Sources Sci Technol 21:015015CrossRefGoogle Scholar
  57. 57.
    Guerra V, Tatarova E, Dias F, Ferreira C (2002) J Appl Phys 91:2648CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Milić M. Pejović
    • 1
  • Momčilo M. Pejović
    • 1
  • Koviljka Stanković
    • 2
  1. 1.Faculty of Electronic EngineeringUniversity of NišNisSerbia
  2. 2.Faculty of Electronic EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations