Advertisement

Plasma Chemistry and Plasma Processing

, Volume 37, Issue 1, pp 243–255 | Cite as

Investigation of the Expansion of an Oxygen Microwave Remote Plasma for the Growth of Functional Oxide Thin Films

  • G. Al Makdessi
  • M. Tabbal
Original Paper
  • 106 Downloads

Abstract

The expansion of an oxygen low-pressure microwave plasma was investigated in order to determine the optimal plasma parameters for the growth of functional oxide semiconductors. Langmuir probe measurements show that the electron density (n e ) increases with the injected power up to a saturation value of 3.0 × 109 cm−3 determined at 10 mTorr while electron temperature (T e ) remains constant at a value of 1.5 eV. When pressure is varied, n e shows a maximum value at a range from 12 to 20 mTorr while T e decreases monotonously with increasing pressure. In addition, both n e and T e decrease with the axial distance from the plasma source. These effects were discussed through the loss mechanisms in the remote plasma. For a pressure of 13 mTorr and at a substrate temperature of 500 °C, plasma enhanced oxidation of pure metallic Ti thin films lead to the formation of a pure TiO2 anatase phase compared to a mixed phase of TiO2 and TiO in the absence of plasma activation. For Mn thin films, the exposure to oxygen remote plasma led to the formation of MnO2 as opposed to obtaining Mn3O4 when oxidation is performed in the oxygen gas ambient. Remote plasma processing was thus found to provide selective pathways to control oxidation states, stoichiometry and phase composition of technologically attractive oxide thin films.

Keywords

Langmuir probe Plasma expansion Remote plasma oxidation Titanium oxide Manganese oxide 

Notes

Acknowledgements

This work was supported by the University Research Board (URB) of AUB and the Lebanese National Scientific Research Council (LNSRC). Central facilities were used within the Central Research Science Laboratory (CRSL) of AUB. The authors would like to thank Prof. Michel Moisan for valuable discussions and Mr. Youssef Gabriel for technical support.

References

  1. 1.
    Faber H, Hirschmann J, Klaumünzer M, Braunschweig B, Peukert W, Halik M (2012) Impact of oxygen plasma treatment on the device performance of zinc oxide nanoparticle-based thin-film transistors. ACS Appl Mater Interfaces 4:1693–1696CrossRefGoogle Scholar
  2. 2.
    Iwasaki Y, Izumi A, Tsurumaki H, Namiki A, Oizumi H, Nishiyama I (2007) Oxidation and reduction of thin Ru films by gas plasma. Appl Surf Sci 253:8699–8704CrossRefGoogle Scholar
  3. 3.
    Gudmundsson JT (2004) Recombination and detachment in oxygen discharges: the role of metastable oxygen molecules. J Phys D Appl Phys 37:2073–2081CrossRefGoogle Scholar
  4. 4.
    Normand F, Granier A, Leprince P, Marec J, Shi MK, Clouet F (1995) Polymer treatment in the flowing afterglow of an oxygen microwave discharge: active species profile concentrations and kinetics of the functionalization. Plasma Chem Plasma Process 15:173–198CrossRefGoogle Scholar
  5. 5.
    Canal C, Gaboriau F, Ricard A, Mozetic M, Cvelbar U, Drenik A (2007) Density of O-atoms in an afterglow reactor during treatment of wool. Plasma Chem Plasma Process 27:404–413CrossRefGoogle Scholar
  6. 6.
    Yang L, Ge D, Zhao J, Ding Y, Kong X, Li Y (2012) Improved electrochromic performance of ordered macroporous tungsten oxide films for IR electrochromic device. Sol Energy Mater Sol Cells 100:251–257CrossRefGoogle Scholar
  7. 7.
    Straumal BB, Protasova SG, Mazilkin AA, Schütz G, Goering E, Baretzky B, Straumal PB (2013) Ferromagnetism of zinc oxide nanograined films. JETP Lett 97:367–377CrossRefGoogle Scholar
  8. 8.
    Peng YH, Huang GF, Huang WQ (2012) Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Adv Powder Technol 23:8–12CrossRefGoogle Scholar
  9. 9.
    Lee W, Shin S, Jung DR, Kim J, Nahm C, Moon T, Park B (2012) Investigation of electronic and optical properties in Al–Ga co-doped ZnO thin films. Curr Appl Phys 12:628–631CrossRefGoogle Scholar
  10. 10.
    Xu S, Diao L (2008) Study of tungsten oxidation in O2/H2/N2 downstream plasma. J Vac Sci Technol A 26:360–364CrossRefGoogle Scholar
  11. 11.
    He G, Fang Q, Liu M, Zhu LQ, Zhang LD (2004) The structural and interfacial properties of HfO2/Si by the plasma oxidation of sputtered metallic Hf thin films. J Cryst Growth 268:155–162CrossRefGoogle Scholar
  12. 12.
    Busani T, Devine RAB (2009) Physical and optical properties of room temperature microwave plasma anodically grown TiO2. J Vac Sci Technol A 27:725–730CrossRefGoogle Scholar
  13. 13.
    Leng YX, Chen JY, Yang P, Sun H, Huang N (2003) Structure and properties of passivating titanium oxide films fabricated by DC plasma oxidation. Surf Coat Technol 166:176–182CrossRefGoogle Scholar
  14. 14.
    Jayasinghe RC, Perera AGU, Zhu H, Zhao Y (2012) Optical properties of nanostructured TiO2 thin films and their application as antireflection coatings on infrared detectors. Opt Lett 37:4302–4304CrossRefGoogle Scholar
  15. 15.
    Liu X, Chen C, Zhao Y, Jia B (2013) A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J Nanomater. doi: 10.1155/2013/736375 Google Scholar
  16. 16.
    Han X, Zhang F, Meng Q, Sun J (2010) Preparation and characterization of highly activated MnO2 nanostructure. J Am Ceram Soc 93:1183–1186CrossRefGoogle Scholar
  17. 17.
    Hannemann M, Hamann S, Burlacov I, Börner K, Spies HJ, Röpcke J (2013) Langmuir probe and optical diagnostics of active screen N2–H2 plasma nitriding processes with admixture of CH4. Surf Coat Technol 235:561–569CrossRefGoogle Scholar
  18. 18.
    Tabbal M, Kahwagy S, Christidis T, Nsouli B, Zahraman K (2006) Pulsed laser deposition of nanostructured dichromium trioxide thin films. Thin Solid Films 515:1976–1984CrossRefGoogle Scholar
  19. 19.
    Taylor KJ, Tynan GR (2005) Control of dissociation by varying oxygen pressure in noble gas admixtures for plasma processing. J Vac Sci Technol A 23:643–650CrossRefGoogle Scholar
  20. 20.
    Ferreira CM, Moisan M (1988) The similarity laws for the maintenance field and the absorbed power per electron in low-pressure surface wave produced plasmas and their extension to HF plasmas in general. Phys Scr 38:382–399CrossRefGoogle Scholar
  21. 21.
    O’Hanlon JF (2003) A user’s guide to vacuum technology, 3rd edn. Wiley, New YorkCrossRefGoogle Scholar
  22. 22.
    Stoffels E, Stoffels WW, Vender D, Kando M, Kroesen GMW, de Hoog FJ (1995) Negative ions in a radio-frequency oxygen plasma. Phys Rev E 51:2425–2435CrossRefGoogle Scholar
  23. 23.
    Chung TH, Kang HR, Bae MK (2012) Optical emission diagnostics with electric probe measurements of inductively coupled Ar/O2/Ar–O2 plasmas. Phys Plasmas 19:1135021–1135029CrossRefGoogle Scholar
  24. 24.
    Kiss’ovski Z, Kolev S, Muller S, Paunska T, Shivarova A (2009) Expanding hydrogen plasmas: photodetachment-technique diagnostics. Plasma Phys Control Fusion 51:015007CrossRefGoogle Scholar
  25. 25.
    Lee C, Lieberman MA (1995) Global model of Ar, O2, Cl2, and Ar/O2 high-density plasma discharges. J Vac Sci Technol, A 13:360–380Google Scholar
  26. 26.
    Seo DC, Chung TH, Yoon HJ (2001) Electrostatic probe diagnostics of a planar-type radio-frequency inductively coupled oxygen plasma. J Appl Phys 89:4218–4223CrossRefGoogle Scholar
  27. 27.
    Chung TH, Yoon HJ, Seo DC (1999) Global model and scaling laws for inductively coupled oxygen discharge plasmas. J Appl Phys 86:3536CrossRefGoogle Scholar
  28. 28.
    Kiss’ovski Z, Kolev S, Shivarova A, Tsankov T (2007) Expanding plasma region of an inductively driven hydrogen discharge. IEEE Trans Plasma Sci 35:1149–1155CrossRefGoogle Scholar
  29. 29.
    Dimitrova M, Djermanova N, Kiss’ovski Z, Kolev S, Shivarova A, Tsankov T (2006) Probe diagnostics of expanding plasmas at low gas pressure. Plasma Process Polym 3:156–159CrossRefGoogle Scholar
  30. 30.
    Droulers G, Beaumont A, Beauvais J, Drouin D (2011) Spectroscopic ellipsometry on thin titanium oxide layers grown on titanium by plasma oxidation. J Vac Sci Technol B 29:021010CrossRefGoogle Scholar
  31. 31.
    Tinck S, Bogaerts A (2011) Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition. Plasma Sources Sci Technol 10:015008CrossRefGoogle Scholar
  32. 32.
    Gudmondson JT, Liebermann MA (1998) Model and measurements for a planar inductive oxygen discharge. Plasma Sources Sci Technol 7:1–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsAmerican University of BeirutBeirutLebanon
  2. 2.Groupe de physique des plasmas, Département de PhysiqueUniversité de MontréalMontrealCanada

Personalised recommendations