Advertisement

Plasma Chemistry and Plasma Processing

, Volume 36, Issue 4, pp 901–915 | Cite as

Operando DRIFT Spectroscopy Characterization of Intermediate Species on Catalysts Surface in VOC Removal from Air by Non-thermal Plasma Assisted Catalysis

  • Anthony Rodrigues
  • Jean-Michel Tatibouët
  • Elodie Fourré
Original Paper

Abstract

An innovative plasma discharge reactor was developed to fit an infrared cell and to allow the in situ characterization of isopropanol (IPA) and toluene decomposition at the surface of three metal oxides (γ-Al2O3, TiO2 and CeO2). The impact of the plasma discharge on the conversion of these pollutants, with the material placed in the discharge area, was studied under real time conditions at atmospheric pressure via infrared analysis. The plasma treatment of IPA molecules led to the formation of acetone, propene, acetic acid and/or formic acid. By contrast, the toluene oxidation led to the rapid opening of the aromatic ring, followed by the total oxidation through carboxylic formation of the species arising from the toluene molecules fragmentation.

Keywords

In-situ characterization Infrared spectroscopy Non-thermal plasma VOC 

Notes

Acknowledgments

The authors would like to thank the French Ministry of Research for the funding of the Ph.D. Grant of A. Rodrigues.

References

  1. 1.
    Bogaerts A, Neyts E, Gijbels R, Van der Mullen J (2002) Spectrochim Acta B 57:609–658CrossRefGoogle Scholar
  2. 2.
    Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Spectrochim Acta B 61:2–30CrossRefGoogle Scholar
  3. 3.
    Kogelschatz U, Eliasson B, Egli W (1999) Pure Appl Chem 71:1819–1828CrossRefGoogle Scholar
  4. 4.
    Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Appl Catal B Environ 78:324–333CrossRefGoogle Scholar
  5. 5.
    Hyun-Ha K (2004) Plasma Process Polym 1:91–110CrossRefGoogle Scholar
  6. 6.
    Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) J Hazard Mater 195:30–54CrossRefGoogle Scholar
  7. 7.
    Tosi P, Ascenzi D, Franceschi P, Guella G (2009) Plasma Sour Sci Technol 18:034005CrossRefGoogle Scholar
  8. 8.
    Tanarro I, Herrero VJ (2009) Plasma Sour Sci Technol 18:034007CrossRefGoogle Scholar
  9. 9.
    Babayan SE, Ding G, Nowling GR, Yang X, Hicks RF (2002) Plasma Chem Plasma Process 22:255–269CrossRefGoogle Scholar
  10. 10.
    Cruden BA, Rao MVVS, Sharma SP, Meyyappan M (2003) J Appl Phys 93:5053–5062CrossRefGoogle Scholar
  11. 11.
    Rivallan M, Aiello S, Thibault-Starzyk F (2010) Rev Sci Instrum 81:103111CrossRefGoogle Scholar
  12. 12.
    Nakagawa Y, Ono R, Oda T (2014) IEEE Trans Ind Appl 50:39–44CrossRefGoogle Scholar
  13. 13.
    Liao X, Guo YF, He JH, Ou WJ, Ye DQ (2010) Plasma Chem Plasma Process 30:841–853CrossRefGoogle Scholar
  14. 14.
    Rivallan M, Fourré E, Aiello S, Tatibouët JM, Thibault-Starzyk F (2012) Plasma Process Polym 9:850–854CrossRefGoogle Scholar
  15. 15.
    Kim HH, Teramoto Y, Negishi N, Ogata A (2015) Catal Today 256:13–22CrossRefGoogle Scholar
  16. 16.
    Barakat C, Grajevat P, Guaitella O, Thévenet F, Rousseau A (2014) Appl Catal B Environ 147:302–313CrossRefGoogle Scholar
  17. 17.
    Jarrige J, Vervisch P (2006) J Appl Phys 99:113303CrossRefGoogle Scholar
  18. 18.
    Karuppiah J, Sivachandiran L, Karvembu R, Subrahmanyam CH (2010) Chem Eng J 165:194–199CrossRefGoogle Scholar
  19. 19.
    Sivachandiran L, Thévenet F, Rousseau A (2013) Plasma Chem Plasma Process 33:855–871CrossRefGoogle Scholar
  20. 20.
    Al-Abduly A, Christensen P (2015) Plasma Sour Sci Technol 24:065006CrossRefGoogle Scholar
  21. 21.
    Manley TC (1943) Trans Electrochem Soc 84:83–96CrossRefGoogle Scholar
  22. 22.
    del Arco M, Gutiérez S, Martin C, Rives V (2001) Phys Chem Chem Phys 3:119–126CrossRefGoogle Scholar
  23. 23.
    Ermini V, Finocchio E, Sechi S, Busca G, Rossini S (2000) Appl Catal A Gen 167:157–167CrossRefGoogle Scholar
  24. 24.
    Zaki MI, Hussein GAM, El-Ammawy HA, Mansour SAA, Polz J, Knözingze H (1990) J Mol Catal 57:367–378CrossRefGoogle Scholar
  25. 25.
    Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Mayer RA (ed) Encyclopedia of analytical chemistry, pp 10815–10837Google Scholar
  26. 26.
    Al-Abadleh HA, Grassian VH (2003) Langmuir 19:341–347CrossRefGoogle Scholar
  27. 27.
    Devlin JP, Buch V (1997) J Phys Chem B 101:1095–1098CrossRefGoogle Scholar
  28. 28.
    Devlin JP, Sadley J, Buch V (2001) J Phys Chem A 105:974–983CrossRefGoogle Scholar
  29. 29.
    Narengerile, Watanabe T (2012) Chem Eng Sci 69:296–303Google Scholar
  30. 30.
    Neaţu S, Sacaliuc-Pârvulescu E, Lévy F, Pârvulescu VI (2009) Catal Today 142:165–169CrossRefGoogle Scholar
  31. 31.
    Hasan MA, Zaki MI, Pasupulety L (2003) Appl Catal A Gen 243:81–92CrossRefGoogle Scholar
  32. 32.
    Benaliouche F, Boucheffa Y, Thybault-Starzyk F (2012) Microporous Mesoporous Mater 147:10–16CrossRefGoogle Scholar
  33. 33.
    Lakshmanan P, Delannoy L, Louis C, Bion N, Tatibouët JM (2013) Cat Sci Technol 3:2918–2925CrossRefGoogle Scholar
  34. 34.
    Parkyns ND (1969) J Chem Soc A 410–417Google Scholar
  35. 35.
    Thornton EW, Harrison PG (1975) J Chem Soc, Faraday Trans 1:461–472CrossRefGoogle Scholar
  36. 36.
    Morterra C, Ghiotti G, Garrone E, Boccuzzi F (1976) J Chem Soc, Faraday Trans 72:2722–2734CrossRefGoogle Scholar
  37. 37.
    Lee DH, Condrate RA Sr (1995) Mater Lett 23:241–246CrossRefGoogle Scholar
  38. 38.
    Digne M, Sautet P, Raybaud P, Euzen P, Toulhoat H (2002) J Catal 211:1–5CrossRefGoogle Scholar
  39. 39.
    Harrison PG, Guest A (1987) J Chem Soc, Faraday Trans 83:3383–3397CrossRefGoogle Scholar
  40. 40.
    Wachs IE (1995) Colloid Surf A 105:143–149CrossRefGoogle Scholar
  41. 41.
    Larkin PJ (2011) IR and Raman spectroscopy: principles and spectral interpretation. Elsevier, AmsterdamGoogle Scholar
  42. 42.
    Little LH (1966) Infrared spectra of adsorbed species. Academic Press, New YorkGoogle Scholar
  43. 43.
    Köck EM, Kogler M, Bielz T, Klötzer B, Penner S (2013) J Phys Chem C 117:17666–17673CrossRefGoogle Scholar
  44. 44.
    Kohno H, Berezin AA, Chang JS, Tamura M, Yamamoto T, Shibuya A, Hondo S (1998) IEEE Trans Ind Appl 34:953–966CrossRefGoogle Scholar
  45. 45.
    Zhu T, Wan YD, Li Y, He XW, Xu DY, Shu XQ, Liang WJ, Jin YQ (2011) Int J Environ Sci Technol 8:621–630CrossRefGoogle Scholar
  46. 46.
    Huang H, Ye D, Leung DYC, Feng F, Guan X (2011) J Mol Catal A: Chem 336:87–93CrossRefGoogle Scholar
  47. 47.
    Xiao G, Xu W, Wu R, Ni M, Du C, Gao X, Luo Z, Cen K (2014) Plasma Chem Plasma Process 34:1033–1065CrossRefGoogle Scholar
  48. 48.
    Klotz B, Barnes I, Becker KH, Golding BT (1997) J Chem Soc, Faraday Trans 93:1507–1516CrossRefGoogle Scholar
  49. 49.
    An G, Sun Y, Zhu T, Yan X (2011) Chemosphere 84:1296–1300CrossRefGoogle Scholar
  50. 50.
    Cheng HH, Chen SS, Yoshizuka K, Chen YC (2012) J Water Chem Technol 34:179–189CrossRefGoogle Scholar
  51. 51.
    Lukes P, Locke BR (2005) J Phys D Appl Phys 38:4074–4081CrossRefGoogle Scholar
  52. 52.
    Berndt T, Böge O (2001) Phys Chem Chem Phys 3:4946–4956CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anthony Rodrigues
    • 1
  • Jean-Michel Tatibouët
    • 1
  • Elodie Fourré
    • 1
  1. 1.Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), UMR CNRS 7285, Ecole Nationale Supérieure d’Ingénieurs de Poitiers (ENSIP)Université de PoitiersPoitiers Cedex 9France

Personalised recommendations