Plasma Chemistry and Plasma Processing

, Volume 36, Issue 1, pp 231–239 | Cite as

Direct Synthesis of Carbon Nanotubes from Only CO2 by a Hybrid Reactor of Dielectric Barrier Discharge and Solid Oxide Electrolyser Cell

  • Shinsuke Mori
  • Naoki Matsuura
  • Lin Lin Tun
  • Masaaki Suzuki
Original Paper


Synthesis of carbon nanotubes (CNTs) from only carbon dioxide was performed using hybrid reactor of dielectric barrier discharge and solid oxide electrolyser cell (SOEC). The removal of oxygen by SOEC from the plasma region suppresses the regeneration of CO2 from CO and complete CO2 conversion was achieved by the hybrid reactor. Co–Mo catalyst supported on a quartz substrate was inserted into the hybrid reactor and aligned CNTs were able to be synthesized on the substrate using only CO2 as a carbon source.


Carbon nanotubes CO2 reforming Solid oxide electrolyser cell Dielectric barrier discharge 


  1. 1.
    Fridman A (2008) Plasma chemistry. Cambridge University Press, New YorkCrossRefGoogle Scholar
  2. 2.
    Resasco DE, Alvarez WE, Pompeo F, Balzano L, Herrera JE, Kititanan B, Borgna A (2002) J Nanoparticle Res 4:131–136CrossRefGoogle Scholar
  3. 3.
    Nishii T, Murakami Y, Einarsson E, Masuyama N, Maruyama S (2005). In: Proceedings of the 6th world conference on experimental heat transfer, fluid mechanics and thermodynamics. pp 17–21Google Scholar
  4. 4.
    Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE (2001) J Vac Sci Technol A 19:1800–1805CrossRefGoogle Scholar
  5. 5.
    Nasibulin AG, Brown DP, Queipo P, Gonzalez D, Jiang H, Kauppinen EI (2006) Chem Phys Lett 417:179–184CrossRefGoogle Scholar
  6. 6.
    Brown LC, Bell AT (1974) Ind Eng Chem Fundam 13:203–210CrossRefGoogle Scholar
  7. 7.
    Mori S, Yamamoto A, Suzuki M (2006) Plasma Sources Sci Technol 15:609–613CrossRefGoogle Scholar
  8. 8.
    Yamamoto A, Mori S, Suzuki M (2007) Thin Solid Films 515:4296–4300CrossRefGoogle Scholar
  9. 9.
    Bidrawn F, Kim G, Corre G, Irvine JTS, Vohs JM, Gortea RJ (2008) Electrochem Solid State Lett 11:B167–B170CrossRefGoogle Scholar
  10. 10.
    Yan J, Chen H, Dogdibegovic E, Stevenson JW, Cheng M, Zhou XD (2014) J Power Sources 252:79–84CrossRefGoogle Scholar
  11. 11.
    Takizawa M, Kiuchi K, Okamoto M, Fujii Y (1997) J Nucl Mater 248:15–18CrossRefGoogle Scholar
  12. 12.
    Nguyen TH, Mori S, Suzuki M (2009) Chem Eng J 155:55–61CrossRefGoogle Scholar
  13. 13.
    Tagawa Y, Mori S, Suzuki M, Yamanaka I, Obara T, Ryu J, Kato Y (2011) Kagaku Kogaku Ronbunshu 37:114–119 (in Japanese) CrossRefGoogle Scholar
  14. 14.
    Okuyama R, Nomura E (1993) J Ceram Soc Jpn 101:405–409 (in Japanese) CrossRefGoogle Scholar
  15. 15.
    Okuyama R, Nomura E (1993) J Ceram Soc Jpn 101:1001–1005 (in Japanese) CrossRefGoogle Scholar
  16. 16.
    Bhatia R, Prasad V (2010) Solid State Commun 150:311–315CrossRefGoogle Scholar
  17. 17.
    Ostrikov K, Neyts EC, Meyyappan M (2013) Adv Phys 62:113–224CrossRefGoogle Scholar
  18. 18.
    Nozaki T, Okazaki K (2008) Plasma Process Polym 5:300–321CrossRefGoogle Scholar
  19. 19.
    Sugime H, Noda S, Maruyama S, Yamaguchi Y (2009) Carbon 47:234–241CrossRefGoogle Scholar
  20. 20.
    Xu M, Futaba DN, Yumura M, Hata K (2012) ACS Nano 6:5837–5844CrossRefGoogle Scholar
  21. 21.
    Singh DK, Lyer PK, Giri PK (2010) Diam Relat Mater 19:1281–1288CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shinsuke Mori
    • 1
  • Naoki Matsuura
    • 1
  • Lin Lin Tun
    • 1
  • Masaaki Suzuki
    • 1
  1. 1.Department of Chemical EngineeringTokyo Institute of TechnologyTokyoJapan

Personalised recommendations