Plasma Chemistry and Plasma Processing

, Volume 35, Issue 1, pp 107–132 | Cite as

Ionization Mechanism and Chemical Composition of an Argon DC Discharge with Water Cathode

  • Dmitriy A. Shutov
  • Sergeiy A. Smirnov
  • Elena Bobkova
  • Vladimir V. Rybkin
Original Paper


This paper reports the results of the experimental study and chemical composition modeling for a DC argon discharge burning above water cathode in the pressure range of 0.1–1 bar and at discharge current of 40 mA. The gas temperature, reduced electric field strength, and emission intensities of some argon lines were obtained. On the base of these data, the modeling chemical composition of plasma was carried out. At modeling, the combined solution of Boltzmann equation for electrons, equations of vibrational kinetics for ground states of N2, O2, H2O and NO molecules, equations of chemical kinetics and plasma conductivity equation was used. The calculations agree well with the measured line intensities. It was shown that discharge burns in diffusion mode, at which the stepwise ionization rate of four lower excited states of argon is equal to the rate of charges diffusion losses.


DC argon discharge Water cathode Modeling Plasma composition Ionization mechanism 



This study was supported by the RFBR Grant, Project No. 14-02-01113 A.


  1. 1.
    Bruggeman P, Leys C (2009) J Phys D Appl Phys 42(5):053001CrossRefGoogle Scholar
  2. 2.
    Titov VA, Rybkin VV, Maximov AI, Choi H-S (2005) Plasma Chem Plasma Process 25(5):502–518CrossRefGoogle Scholar
  3. 3.
    Li L, Nikiforov A, Xiong Q, Lu X, Taghizadeh L, Leys C (2012) J Phys D Appl Phys 45(12):125201CrossRefGoogle Scholar
  4. 4.
    Nikiforov A, Li L, Xiong Q, Leys C, Lu XP (2011) Eur Phys J Appl Phys 56(2):23013–24009CrossRefGoogle Scholar
  5. 5.
    Ito H, Kano H (2008) Appl Phys Express 1:10601–10603Google Scholar
  6. 6.
    Liu DX, Bruggeman P, Iza F, Rong MZ, Kong MC (2010) Plasma Sources Sci Technol 19(2):025018CrossRefGoogle Scholar
  7. 7.
    Mirakami T, Niemi K, Gans T, O’Connel D, Graham WG (2013) Plasma Sources Sci Technol 22(1):01503Google Scholar
  8. 8.
    Van Gaens W, Bogaerts A (2013) J Phys D Appl Phys 46(27):275201CrossRefGoogle Scholar
  9. 9.
    Shiqiang Zhang S, Van Gaens W, Van Gessel B, Hofman S, Van Veldhuizen E, Bogaerts A, Bruggeman P (2013) J Phys D Appl Phys 46(20):205202CrossRefGoogle Scholar
  10. 10.
    Van Gaens W, Bruggeman PJ, Bogaerts A (2014) New J Phys 16: 063054Google Scholar
  11. 11.
    Gordiets B, Ferreira CM, Nahorny J, Pagnon D, Touzeau M, Vialle M (1996) J Phys D Appl Phys 29(4):1021–1031CrossRefGoogle Scholar
  12. 12.
    Smirnov SA, Rybkin VV, Kholodkov IV, Titov VA (2002) High Temp 40(3):323–330CrossRefGoogle Scholar
  13. 13.
    Puech V, Torchin L (1986) J Phys D Appl Phys 19(12):2304–2309CrossRefGoogle Scholar
  14. 14.
    Gordiets BF, Ferreira CM, Guerra VL, Loureiro J, Nahorny J, Pagnon D, Touzeau Vialle M (1995) IEEE Trans Plasma Sci 23(23):750–768CrossRefGoogle Scholar
  15. 15.
    Kajita S, Ushiroda S, Kondo Y (1990) J Phys D Appl Phys 67(9):4015–4023CrossRefGoogle Scholar
  16. 16.
    Rybkin VV, Titov VA, Kholodkov IV (2008) Izv Vyssh Uchebn Zaved Khim Khim Tekhnol 51(3):3–10 (in Russian)Google Scholar
  17. 17.
    Rybkin VV, Titov VA, Kholodkov IV (2009) Izv Vyssh Uchebn Zaved Khim Khim Tekhnol 52(12):3–10 (in Russian)Google Scholar
  18. 18.
    Laher RR, Gilmore FR (1990) J Phys Chem Ref Data 19(1):277–304CrossRefGoogle Scholar
  19. 19.
    Louriero J, Ferreira CM (1989) J Phys D Appl Phys 22(11):1680–1691CrossRefGoogle Scholar
  20. 20.
    Diamy A-M, Legrand J-C, Smirnov SA, Rybkin VV (2005) Contr Plasma Phys 45(1):5–21CrossRefGoogle Scholar
  21. 21.
    Titov VA, Rybkin VV, Smirnov SA, Kulentsan AN, Choi H-S (2006) Plasma Chem Plasma Process 26(6):543–555CrossRefGoogle Scholar
  22. 22.
    Physical-Chemical Processes in a Gas Dynamics. V. 1. Dynamics of physical–chemical processes in gas and plasma (1995) Ed. Chernyiy GG and Losev SA. Moscow, MSU (in Russian) Google Scholar
  23. 23.
    Lide DR (2003–2004) Handbook of chemistry and physics. CRC Press, New York Google Scholar
  24. 24.
    Bobkova ЕS, Smirnov SA, Zalipaeva YuV, Rybkin VV (2014) Plasma Chem Plasma Process 34(4):721–743CrossRefGoogle Scholar
  25. 25.
    Alexandrov NL (1988) Adv Phys Sci (Uspekhi Fizicheskikh Nauk) 154 (2): 177–206 (in Russian)Google Scholar
  26. 26.
    Eliasson B, Kogelschatz U (1986) Basic data for modeling of electrical discharges in gases: oxygen. Brown Boveri Research Report KLR86-11CGoogle Scholar
  27. 27.
    Fehsenfeld FC, Albritton DL, Burt JA (1969) Can J Chem 47(10):1793–1795CrossRefGoogle Scholar
  28. 28.
    Phelps AV (1969) Can J Chem 47(10):1783–1793CrossRefGoogle Scholar
  29. 29.
    Kenner RD, Ogryzlo EA (1980) Intern J Chem Kinet 12(7):502–508CrossRefGoogle Scholar
  30. 30.
    Fehsenfeld FC, Ferguson EE, Schmeltekopf AL (1966) J Chem Phys 45(5):1844–1845CrossRefGoogle Scholar
  31. 31.
    Slanger TG, Black G (1979) J Chem Phys 70(7):3434–3443CrossRefGoogle Scholar
  32. 32.
    Dvoryankin AN, Ibragimov LB, Kulagin YA, Shelepin LA (1987) Mechanisms of electron relaxation in atomic-molecular media. In: Smirnov BM (ed) Plasma Chemistry. Moscow, Energoatomizdat (in Russian)Google Scholar
  33. 33.
    Zinn J, Sutherland CD, Stone SN, Dunkan LM (1982) J Atmos Terr Phys 44(12):1143–1171CrossRefGoogle Scholar
  34. 34.
    Young RA, Black G (1967) J Chem Phys 47(7):2311–2318CrossRefGoogle Scholar
  35. 35.
    Smirnov BM (1982) Excited atoms. Moscow, Energoizdat (in Russian)Google Scholar
  36. 36.
    Slanger TG, Black G (1981) J Chem Phys 75(5):2247–2251CrossRefGoogle Scholar
  37. 37.
    Slanger TG, Black G (1976) J Chem Phys 64(9):3763–3766CrossRefGoogle Scholar
  38. 38.
    Atkinson R, Welge KH (1972) J Chem Phys 57(9):3689–3693CrossRefGoogle Scholar
  39. 39.
    Kossyi IA, Kostinskiy IA, Matveev AA, Silakov VP (1994) Plasma chemical processes in non-equilibrium nitrogen-oxygen mixture. Proc Inst Gen Phys RAS 47:37–57 (in Russian)Google Scholar
  40. 40.
    Alexandrov NL (1978) Tech Phys (Zhurnal Tekhnicheskoi Fiziki) 48(7):1428–1431 (in Russian)Google Scholar
  41. 41.
    Kozlov SI, Vlaskov VA, Smirnova NV (1988) Space Res 26(5):738–745 (in Russian)Google Scholar
  42. 42.
    Smith K (1981) Tomson R Numer model gas lasers. Mir, Moscow (in Russian)Google Scholar
  43. 43.
    Krivonosova OE, Losev SA, Nalivaiyko VP (1987) Advisable data on rate constants of chemical reactions between molecules consisting from N and O atoms. In: Smirnov BM (ed) Plasma chemistry. Energoatomizdat, Moscow (in Russian)Google Scholar
  44. 44.
    Jannuzzi MP, Jeffries JB, Kaufman F (1982) Chem Phys Lett 87(6):570–574CrossRefGoogle Scholar
  45. 45.
    Piper LG, Caledonia GE, Kennelaly JP (1981) J Chem Phys 75(6):2847–2853CrossRefGoogle Scholar
  46. 46.
    Silakov VP (1990) Mechanism of supporting the long-lived plasma in molecular nitrogen at high pressure. Preprint of Moscow Engineering Physical Institute N 010–90M (in Russian) Google Scholar
  47. 47.
    Slovetskiy DI (1980) Mechanisms of chemical reactions in non-equilibrium plasma. Moscow, Mir (in Russian)Google Scholar
  48. 48.
    Piper LG (1982) J Chem Phys 77(5):2373–2377CrossRefGoogle Scholar
  49. 49.
    Young RA, Black G, Slanger TG (1970) J Chem Phys 51(1):116–121Google Scholar
  50. 50.
    Radtsig AA, Smirnov BM (1980) Handbook on atomic and molecular physics. Atomizdat, Moscow (in Russian)Google Scholar
  51. 51.
    Piper LG (1987) J Chem Phys 87(3):1625–1629CrossRefGoogle Scholar
  52. 52.
    Yaron М, Von Engel A, Vidaud PH (1976) Chem Phys Lett 37(1):159–161CrossRefGoogle Scholar
  53. 53.
    Didyukov AI, YuA Kulagin, Shelepin LA, Yarygina VN (1989) Quantum Electron 16(5):892–904 (in Russian)Google Scholar
  54. 54.
    О’Brien RJ, Myers GH (1970) J Chem Phys 53(10):3832–3835CrossRefGoogle Scholar
  55. 55.
    Yau AW, Shepherd GG (1979) Planet Space Sci 27(4):481–490CrossRefGoogle Scholar
  56. 56.
    Husain D, Mitra SK, Young AN (1974) J Chem Soc Faradey Trans Part II 70(10):1721–1731CrossRefGoogle Scholar
  57. 57.
    Delcroix JL, Ferreira CV, Ricard F (1973) Proceedings of the XI International Conference Phenomena in Ionized Gases: invited papers. Prague. 301Google Scholar
  58. 58.
    Baulch DL, Сох RA, Crutzen PJ (1982) J Phys Chem Ref Data 11(2):327–496CrossRefGoogle Scholar
  59. 59.
    Bukharin EB, Lobanov AN (1984) Proc IV All-USSR symp plasma chem, Dnepropetrovsk, pp 52–53 (in Russian)Google Scholar
  60. 60.
    Dmitrieva IK, Zenevich VA (1984) Russ J Phys Chem B Focus Phys (Zhurnal Khimicheskoi Fiziki) 3(8):1075–1080 (in Russian)Google Scholar
  61. 61.
    Ivanov VV, Klopovskii KS, Lopaev DV, Rakhimov AT, Rakhimova TV (2000) Plasma Phys Rep 26(11):980–990CrossRefGoogle Scholar
  62. 62.
    Karoulina EV, YuA Lebedev (1992) J Phys D Appl Phys 25(3):401–412CrossRefGoogle Scholar
  63. 63.
    Smirnov BM (1974) Ions and excited atoms. Moscow, Atomizdat (in Russian)Google Scholar
  64. 64.
    Karasheva NN, Otorbaev DK, Ochkin VN (1985) Proc Phys Ins USSR Acad Sci 157:177 (in Russian)Google Scholar
  65. 65.
    Clark JD, Masson AJ, Wayne RP (1972) Mol Phys 23(5):995–1005CrossRefGoogle Scholar
  66. 66.
    Morozov II, Temchin CM (1990) Reactions kinetics of singlet oxygen in a gas phase. In: Smirnov BM (ed) Plasma Chemistry Atomizdat, Moscow (in Russian)Google Scholar
  67. 67.
    Moore CE (1976) Selected tables of atomic spectra, atomic energy levels and multiplet tables-OI. National Bureau of Standards US Section 7, pp 1–30Google Scholar
  68. 68.
    Bastien F, Haug R, Lecuiller M (1975) J Chim Phys 72(1):105–112Google Scholar
  69. 69.
    Pace L (1978) IEEE J Quant Electron 14(4):263–274CrossRefGoogle Scholar
  70. 70.
    Smirnov BM (1978) Negative ions. Мoscow, Atomizdat (in Russian)Google Scholar
  71. 71.
    Baulch DL, Cobos CJ, Cox RA, Esser C, Franec P, Just Th, Kerr JA, Pilling MJ, Troe J, Walker RN, Warnatz J (1992) J Phys Chem Ref Data 21(3):411–429CrossRefGoogle Scholar
  72. 72.
    Peyrous R, Rignolet P, Held BJ (1989) J Appl Phys D Appl Phys 22(11):1658–1667CrossRefGoogle Scholar
  73. 73.
    Chirokov A Self-organization of microdischarges in DBD plasma. Master Thesis Dreaxel UniversityGoogle Scholar
  74. 74.
    Tochikubo F, Ushida S, Watanabe T (2004) Jpn J Appl Phys 43(1):315–320CrossRefGoogle Scholar
  75. 75.
    Smedt FD, Bui XV, Nguyen TL, Peeters J, Vereecken L (2005) J Phys Chem 109(1):2401–2409CrossRefGoogle Scholar
  76. 76.
    Pontiga F, Soria C, Casrellanos A, Skalny JD (2002) Ozone Sci Eng 24(6):447–462CrossRefGoogle Scholar
  77. 77.
    DeMore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR, Kolb CE, Molina MJ (1997) Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 12. JPL Publication 97-4Google Scholar
  78. 78.
    Tsang W, Herron JT (1991) J Phys Chem Ref Data 20(4):609–663CrossRefGoogle Scholar
  79. 79.
    Hipples H, Krasteva N, Nasterlack S, Striebel F (1999) J Chem Phys A 110(14):6781–6788Google Scholar
  80. 80.
    Gauthier MJE, Snelling DR (1975) J Photochem 4(1):27–50CrossRefGoogle Scholar
  81. 81.
    Su M-C, Kumaran SS, Lim KP, Michael JV, Wagner AF, Hardling LB, Fang D-C (2002) J Phys Chem A 106(36):8261–8270CrossRefGoogle Scholar
  82. 82.
    Young RA, Black G, Slanger TG (1969) J Chem Phys 50(1):303–308CrossRefGoogle Scholar
  83. 83.
    Taylor GW, Setser DW (1971) J Am Chem Soc 93(19):4930–4932CrossRefGoogle Scholar
  84. 84.
    Clark WG, Setser DW (1980) J Phys Chem 84(18):228–2233CrossRefGoogle Scholar
  85. 85.
    Arnold J, Comes FJ (1980) Chem Phys 47(1):125–130CrossRefGoogle Scholar
  86. 86.
    Smith CA, Molina LT, Lamb JJ, Molina MJ (1984) Int J Chem Kinet 16(1):41–55CrossRefGoogle Scholar
  87. 87.
    Novicki S, Krenos J (1988) J Chem Phys 89:031–7032CrossRefGoogle Scholar
  88. 88.
    Tsang W, Hampson RF (1986) J Phys Chem Ref Data 15(3):1087–1279CrossRefGoogle Scholar
  89. 89.
    Benson SW, Axworthy AE (1957) J Chem Phys 26:1718–1726CrossRefGoogle Scholar
  90. 90.
    Shuman NS, Miller TM, Viggiano AA (2012) J Chem Phys 136(12):124307CrossRefGoogle Scholar
  91. 91.
    Pancheshnyi SV, Starikovskaia SM, Starikovskii AY (1998) Chem Phys Lett 294(6):523–527CrossRefGoogle Scholar
  92. 92.
    Smirnov SA, Rybkin VV, Ivanov AN, Titov VA (2007) High Temp 45(3):291–297CrossRefGoogle Scholar
  93. 93.
    Hanley HJM (1973) J Phys Chem Ref Data 2(3):619–642CrossRefGoogle Scholar
  94. 94.
    Bailey AE, Heard DE, Henderson DA, Paul PH (1999) Chem Phys Lett 302(1–2):132–138CrossRefGoogle Scholar
  95. 95.
    Li L, Nikiforov A, Xiong Q, Britun N, Snyders R., Lu X, Leys C (2013) Phys Plasmas 20(9): 093502Google Scholar
  96. 96.
    Verreycken T, Schram DC, Leys C, Bruggeman P (2010) Plasma Sources Sci Technol 19(4): 045004Google Scholar
  97. 97.
    McDaniel EW, Mason EA (1973) The mobility and diffusion of ions in gases. Wiley, New YorkGoogle Scholar
  98. 98.
    Staack D, Farouk B, Gutsol A, Fridman A (2005) Plasma Sources Sci Technol 14(4):700–711CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dmitriy A. Shutov
    • 1
  • Sergeiy A. Smirnov
    • 1
  • Elena Bobkova
    • 2
  • Vladimir V. Rybkin
    • 1
  1. 1.Department of Microelectronic Devices and MaterialsIvanovo State University of Chemistry and TechnologyIvanovoRussia
  2. 2.Department of Industrial EcologyIvanovo State University of Chemistry and TechnologyIvanovoRussia

Personalised recommendations