Plasma Chemistry and Plasma Processing

, Volume 35, Issue 1, pp 143–157 | Cite as

Removal of Model Pollutants in Aqueous Solution by Gliding Arc Discharge. Part II: Modeling and Simulation Study

  • Iya-Sou Djakaou
  • Rédouane Mouffok Ghezzar
  • Mohamed El-Mehdi Zekri
  • Fatiha Abdelmalek
  • Simeon Cavadias
  • Stéphanie Ognier
Original Paper


The aim of this work is the modeling of plasma-chemical reactions taking place between highly oxidizing gaseous species (·OH, ·NO and derivatives), generated by Gliding Arc Discharge in Humid Air (GAD-HA), and organic pollutants in aqueous solution. Theses pollutants were chosen on the base of their volatility at atmospheric and ambient conditions: 1-Heptanol (highly volatile), phenol (moderately volatile) and para-chlorobenzoic acid, pCBA (poorly volatile). The mass transfer model of diffusion-convection was coupled to a proposed kinetic model in order to describe the phenomenology of the electrical process. The mass transfer model was obtained independently by stripping toluene and phenol molecules. The simplified kinetic model was proposed with the main reactions in gas and liquid phases mentioned in the literature. The only adjustable parameter of the model was the ·OH concentration in the plasma plume. For a concentration of ·OH of 24 ppm in the plasma plume, the model gives results in agreement with experimental results for the three model pollutants tested. The coupling of the experimental results and the simulation study allowed us to: (1) confirm that the main removal mechanism is different according to the nature of the pollutant and depends on the pollutant properties (reactivity, volatility), (2) calculate [·OH], [ONOOH] and [NO 2 · ]. The results of this work can be used to assist experiences in the plasma engineering field.


Gliding Arc Discharge Modeling Pollutants Mechanism ·OH NO2· HOONO 



The authors thank ‘Erasmus Mundus’ and ‘Pierre et Marie Curie University’ for their financial help during Mr. Ghezzar post-doctoral fellowship.


  1. 1.
    Locke BR, Thagard SM (2009) IEEE Trans Plasma Sci 37(4):494–501CrossRefGoogle Scholar
  2. 2.
    Pascal S, Moussa D, Hnatiuc E, Brisset JL (2010) J Hazard Mater 175:1037–1041CrossRefGoogle Scholar
  3. 3.
    Locke BR, Thagard SM (2012) Plasma Chem Plasma Process 32:875–917CrossRefGoogle Scholar
  4. 4.
    Benstaali B, Boubert P, Cheron BG, Addou A, Brisset JL (2002) Plasma Chem Plasma Proc 22:553–571CrossRefGoogle Scholar
  5. 5.
    Moussa D, Brisset JL (2003) J Hazard Mater 102:189–200CrossRefGoogle Scholar
  6. 6.
    Abdelmalek F, Toress RA, Combet E, Petrier C, Pulgarin C, Addou A (2008) Sep Purif Technol 63:30–37CrossRefGoogle Scholar
  7. 7.
    Burlica R, Kirkpatrick MJ, Finney WC, Clark RJ, Locke BR (2004) J Electrostat 62:309–321CrossRefGoogle Scholar
  8. 8.
    Yan JH, Liu YN, Bo Z, Li X, Den KF (2008) J Hazard Mater 157:441–447CrossRefGoogle Scholar
  9. 9.
    Iya-Sou D, Laminsi S, Cavadias S, Ognier S (2013) Plasma Chem Plasma Process 33:97–113CrossRefGoogle Scholar
  10. 10.
    Bird BR, Stewart WE, Light foot EN (2007) Transport phenomena. Wiley, New YorkGoogle Scholar
  11. 11.
    Sander R, Air Chemistry Department, Accessed 8 April 1999
  12. 12.
    Brisset JL, Hnatiuc E (2012) Plasma Chem Plasma Process 32:655–674CrossRefGoogle Scholar
  13. 13.
    Bo Z, Yan J, Li X, Chi Y, Cen K (2009) J Hazard Mater 166:1210–1216CrossRefGoogle Scholar
  14. 14.
    Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) J Phys Chem Ref Data 17:513–886CrossRefGoogle Scholar
  15. 15.
    Patwardhan JA, Joshi JB (2003) AIChE J 49:2728–2748CrossRefGoogle Scholar
  16. 16.
    Radi R, Denicola A, Alvarez B, Ferrer-Sueta G, Rubbo H (2000) In: Chapter 4 Nitric oxide: biology and pathobiology. Academic Press, WalthamGoogle Scholar
  17. 17.
    Vione D, Maurino V, Minero C, Pelizzeti E (2001) Chemosphere 45:903–910CrossRefGoogle Scholar
  18. 18.
    Daiber A, Mehl M, Ullrich V (1998) Nitric Oxide Biol Chem 2:259–269CrossRefGoogle Scholar
  19. 19.
    Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS (1992) Chem Res Toxicol 5:834–842Google Scholar
  20. 20.
    Atkinson R, Baulch D, Cox R, Hampson R, Kerr J, Troe J (1992) J PhysChem Ref Data 21:551–562Google Scholar
  21. 21.
    Sweeney AJ, Liu YA (2001) Ind Eng Chem Res 40:2618–2627CrossRefGoogle Scholar
  22. 22.
    Kohnen LS, Mouithys-Mickalad A, Deby-Dupont G, Deby T, Hans P, Lamy M, Noelsa A (2003) Nitric Oxide 8:170–181CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Zhou L, Zeng C, Wang Q, Wanga Z, Gao SA, Ji Y, Yang X (2013) Chemosphere 93:1747–1754CrossRefGoogle Scholar
  24. 24.
    Azrague K, Osterhus SW, Biomorgi JG (2009) Water Sci Technol 59:1209–12017CrossRefGoogle Scholar
  25. 25.
    Schwarz Z (1948) anorg Chem 1:256Google Scholar
  26. 26.
    Allen N (1948) J Phys Coll Chem 52:479CrossRefGoogle Scholar
  27. 27.
    Halfpenny E, Robinson PL (1952) J Chem Soc 168:928–938Google Scholar
  28. 28.
    Bruggeman P, Schram DC (2010) Plasma Sources Sci Technol 19:1–9Google Scholar
  29. 29.
    Moreau M, Orange N, Feuilloley MGJ (2008) Biotechnol Adv 26:610–617CrossRefGoogle Scholar
  30. 30.
    Merouani DR, Abdelmalek F, Ghezzar MR, Semmoud A, Addou A, Brisset JL (2013) Ind Eng Chem Res 52(4):1471–1480CrossRefGoogle Scholar
  31. 31.
    Franclemont J, Mededovic Thagard S (2014) Plasma Chem Plasma Process 34:705–719CrossRefGoogle Scholar
  32. 32.
    Keith WG, Powell E (1969) J Chem Soc A 90–90Google Scholar
  33. 33.
    Warman P (1998) In: Alfassi Z (ed) N centered radicals, Chap. 5. Wiley, Chichester, pp 155–180Google Scholar
  34. 34.
    Radi R (1998) Chem Res Toxicol 11:720–721CrossRefGoogle Scholar
  35. 35.
    Beltran-Heredia J, Torregrosa J, Dominguez JR, Peres JA (2001) Chemosphere 42:351–359CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Iya-Sou Djakaou
    • 1
  • Rédouane Mouffok Ghezzar
    • 1
    • 2
  • Mohamed El-Mehdi Zekri
    • 1
  • Fatiha Abdelmalek
    • 2
  • Simeon Cavadias
    • 1
  • Stéphanie Ognier
    • 1
  1. 1.Institut de Recherche de Chimie ParisCNRS – Chimie ParisTechParisFrance
  2. 2.Laboratoire des Sciences et Techniques de l’Environnement et de la Valorisation (STEVA), Faculté des Sciences et de la TechnologieUniversité de MostaganemMostaganemAlgeria

Personalised recommendations