Plasma Chemistry and Plasma Processing

, Volume 35, Issue 1, pp 217–230 | Cite as

Modeling and Experimental Study of Trichloroethylene Abatement with a Negative Direct Current Corona Discharge

  • Arne M. Vandenbroucke
  • Robby Aerts
  • Wouter Van Gaens
  • Nathalie De Geyter
  • Christophe Leys
  • Rino Morent
  • Annemie Bogaerts
Original Paper


In this work, we study the abatement of dilute trichloroethylene (TCE) in air with a negative direct current corona discharge. A numerical model is used to theoretically investigate the underlying plasma chemistry for the removal of TCE, and a reaction pathway for the abatement of TCE is proposed. The Cl atom, mainly produced by dissociation of COCl, is one of the controlling species in the TCE destruction chemistry and contributes to the production of chlorine containing by-products. The effect of humidity on the removal efficiency is studied and a good agreement is found between experiments and the model for both dry (5 % relative humidity (RH)) and humid air (50 % RH). An increase of the relative humidity from 5 % to 50 % has a negative effect on the removal efficiency, decreasing by ±15 % in humid air. The main loss reactions for TCE are with ClO·, O· and CHCl2. Finally, the by-products and energy cost of TCE abatement are discussed.


Non-thermal plasma Corona discharge Volatile organic compound Trichloroethylene Modeling 



R. Morent acknowledges the support of the Research Foundation Flanders (FWO, Belgium) through a post-doctoral research fellowship. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 279022. We are also very grateful to M. Kushner and group members for providing the Global_kin code and the useful advice. This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Finally, we acknowledge the financial support by an IOF-SBO project of the University of Antwerp.

Supplementary material

11090_2014_9584_MOESM1_ESM.pdf (398 kb)
Supplementary material 1 (PDF 398 kb)


  1. 1.
    Kim HH (2004) Plasma Process Polym 1:91–110CrossRefGoogle Scholar
  2. 2.
    Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Appl Catal B Environ 78:324–333CrossRefGoogle Scholar
  3. 3.
    Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) J Hazard Mater 195:30–54CrossRefGoogle Scholar
  4. 4.
    Parmar GR, Rao NN (2009) Crit Rev Environ Sci Tec 39:41–78CrossRefGoogle Scholar
  5. 5.
    Nunez CM, Ramsey GH, Ponder WH, Abbott JH, Hamel LE, Kariher PH (1993) Air Waste 43:242–247CrossRefGoogle Scholar
  6. 6.
    Urashima K, Chang JS (2000) IEEE Trans Dielec Electr Insul 7:602–614CrossRefGoogle Scholar
  7. 7.
    Müller S, Zahn RJ (2007) Contrib Plasma Phys 47:520–529CrossRefGoogle Scholar
  8. 8.
    Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) J Adv Oxid Technol 14:165–173Google Scholar
  9. 9.
    Vandenbroucke AM, Morent R, De Geyter N, Leys C (2012) J Adv Oxid Technol 15:232–241Google Scholar
  10. 10.
    Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Environ Sci Technol 43:2216–2227CrossRefGoogle Scholar
  11. 11.
    Vandenbroucke AM, Dinh Nguyen MT, Giraudon JM, Morent R, De Geyter N, Lamonier JF, Leys C (2011) Plasma Chem Plasma Process 31:707–718Google Scholar
  12. 12.
    Evans D, Rosocha LA, Anderson GK, Coogan JJ, Kushner MJ (1993) J Appl Phys 74:5378–5386CrossRefGoogle Scholar
  13. 13.
    Dorai R, Kushner MJ (1999) SAE/SP no. 1999-01-3683:81-88Google Scholar
  14. 14.
    Aerts R, Martens T, Bogaerts A (2012) J Phys Chem C 116:23257–23273CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Van Gaens W, Bogaerts A (2013) J Phys D Appl Phys 46:275201CrossRefGoogle Scholar
  17. 17.
    Fridman A (ed) (2008) Plasma chemistry. Cambridge University Press, New YorkGoogle Scholar
  18. 18.
    Aerts R, Tu X, De Bie C, Whitehead JC, Bogaerts A (2012) Plasma Process Polym 9:994–1000CrossRefGoogle Scholar
  19. 19.
    Magureanu M, Mandache NB, Parvulescu VI (2007) Plasma Chem Plasma Process 27:679–690CrossRefGoogle Scholar
  20. 20.
    Kossyi IA, Kostinsky AY, Matveyev AA, Silakov VP (1992) Plasma Sources Sci Technol 1:207–220CrossRefGoogle Scholar
  21. 21.
    Callebaut T, Kochetov I, Akishev Y, Napartovich A, Leys C (2004) Plasma Sources Sci Technol 13:245–250CrossRefGoogle Scholar
  22. 22.
    Futamura S, Zhang AH, Yamamoto T (1997) J Electrostat 42:51–62CrossRefGoogle Scholar
  23. 23.
    Futamura S, Einaga H, Zhang AH (2001) IEEE Trans Ind Appl 37:978–985CrossRefGoogle Scholar
  24. 24.
    Trushkin AN, Grushin ME, Kochetov IV, Trushkin NI, Akishev YS (2013) Plasma Phys Reports 39:167–182CrossRefGoogle Scholar
  25. 25.
    Gift JS, McGaughy R, Singh DV, Sonawane B (2008) Regul Toxic Pharmac 51:98–107CrossRefGoogle Scholar
  26. 26.
    McCulloch A (2003) Chemosphere 50:1291–1308CrossRefGoogle Scholar
  27. 27.
    Hakoda T, Hashimoto S, Fujiyama Y, Mizuno A (2000) J Phys Chem A 104:59–66CrossRefGoogle Scholar
  28. 28.
    Magureanu M, Mandache NB, Parvulescu VI, Subrahmanyam C, Renken A, Kiwi-Minsker L (2007) Appl Catal B Environ 74:270–277CrossRefGoogle Scholar
  29. 29.
    Morent R, Dewulf J, Steenhaut N, Leys C, Van Langenhove H (2006) J Adv Oxid Technol 9:53–58Google Scholar
  30. 30.
    Oda T, Takahashi T, Kohzuma S (2001) IEEE Trans Ind Appl 37:965–970CrossRefGoogle Scholar
  31. 31.
    Jiang C, Mohamed AH, Stark RH, Yuan JH, Schoenbach KH (2005) IEEE Trans Plasma Sci 33:1416–1425Google Scholar
  32. 32.
    Nguyen Dinh MT, Giraudon JM, Lamonier JF, Vandenbroucke A, De Geyter N, Leys C, Morent R (2014) Appl Catal B Environ 147:904–911Google Scholar
  33. 33.
    Vandenbroucke AM, Mora M, Jimenez-Sanchidrian C, Romero-Salguero FJ, De Geyter N, Leys C, Morent R (2014) Appl Catal B Environ 156:94–100CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Arne M. Vandenbroucke
    • 1
  • Robby Aerts
    • 2
  • Wouter Van Gaens
    • 2
  • Nathalie De Geyter
    • 1
  • Christophe Leys
    • 1
  • Rino Morent
    • 1
  • Annemie Bogaerts
    • 2
  1. 1.Department of Applied Physics, Research Unit Plasma Technology, Faculty of Engineering and ArchitectureGhent UniversityGhentBelgium
  2. 2.Department of Chemistry, Research Group PLASMANTUniversity of AntwerpAntwerpBelgium

Personalised recommendations