Plasma Chemistry and Plasma Processing

, Volume 34, Issue 6, pp 1371–1385 | Cite as

Influence of N2/O2 Mixtures on Decomposition of Naphthalene in Surface Dielectric Barrier Discharge Based Reactor

  • Ayman A. Abdelaziz
  • Takafumi Seto
  • M. Abdel-Salam
  • Yoshio Otani
Original Paper


The decomposition of naphthalene in surface dielectric barrier discharge (SDBD) based reactor is investigated in different carrier gases (air, nitrogen, and oxygen) in order to understand the reaction mechanism of the decomposition process. The decomposition efficiency of naphthalene is determined at different oxygen content (from 0 to 10 vol%) and different input power. The highest decomposition efficiency is obtained in nitrogen at low input power, due to the role played by the nitrogen excited species in the decomposition process. In addition, the decomposition efficiency is decreased with increasing the oxygen content at a low input power. At a relatively high input power, the decomposition efficiency reached its maximum value in pure oxygen. Moreover, the decomposition efficiency decreases with the increase of the oxygen content reaching minimum value at a small content of oxygen (~3 vol% O2) and relatively high input power, and then increases at higher oxygen content. The results show that the decomposition of naphthalene in the present reactor could be treated as a first order reaction with respect to the concentration of naphthalene.


Surface discharge Decomposition efficiency Naphthalene Oxygen content 



The authors would like to present deep thanks to Dr. T. Ishijima, Associate professor at Research Center for Sustainable Energy and Technology—Kanazawa University, for his help and suggestions in the optical spectroscopic measurements. Moreover, the authors express sincere appreciation to Walid M. Hikal, Postdoc in Texas Tech., for his valuable comments in this work.


  1. 1.
    Harvey RG (1997) Polycyclic aromatic hydrocarbons. Wiley-VCH, New YorkGoogle Scholar
  2. 2.
    Petrov A (1987) Petroleum hydrocarbons. Springer, New York, NYCrossRefGoogle Scholar
  3. 3.
    Atkinson R, Aschman S (1988) Kinetics of reactions of acenaphthene and acenaphthylene and structurally related aromatic compounds with OH and NO3 radicals, N2O5 and O3 at 296 K. Int J Chem Kinet 20:513–553CrossRefGoogle Scholar
  4. 4.
    Szepesy L, Lakszner K, Ackermann L, Podmaniczky L, Literáthy P (1981) Rapid method for the determination of polycyclic aromatic hydrocarbons in environment samples by combined liquid and gas chromatography. J Chromatogr A 206:611–616CrossRefGoogle Scholar
  5. 5.
    Ravindra K, Sokhi R, Vangrieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921CrossRefGoogle Scholar
  6. 6.
    Beegle LW, Wdowiak TJ, Harrison JG (2001) Hydrogenation of polycyclic aromatic hydrocarbons as a factor affecting the cosmic 6.2 micron emission band. Spectrochim Acta Part A Mol Biomol Spectrosc 57:737–744CrossRefGoogle Scholar
  7. 7.
    Marchand N, Besombes JL, Chevron N, Masclet P, Aymoz G, Jaffrezo JL (2004) Polycyclic aromatic hydrocarbons (PAHs) in the atmospheres of two French alpine valleys: sources and temporal patterns. Atmos Chem Phys 4:1167–1181CrossRefGoogle Scholar
  8. 8.
    Keith L, Telliard W (1979) ES&T Special Report: priority pollutants: I—a perspective view. Environ Sci Technol 13:416–423CrossRefGoogle Scholar
  9. 9.
    Bunce N, Liu L, Zhu J (1997) Reaction of naphthalene and its derivatives with hydroxyl radicals in the gas phase. Environ Sci Technol 31:2252–2259CrossRefGoogle Scholar
  10. 10.
    Dann T (1989) Polycyclic aromatic hydrocarbons in the ambient air of Toronto, Ontario and Montréal, Québec. Pollution Measurement Division, Technology Development and Technology Services Branch, Environment CanadaGoogle Scholar
  11. 11.
    Wang L, Atkinson R, Arey J (2007) Dicarbonyl products of the OH radical-initiated reactions of naphthalene and the C1- and C2-alkylnaphthalenes. Environ Sci Technol 41:2803–2810CrossRefGoogle Scholar
  12. 12.
    Bityurin VA, Filimonova EA, Naidis GV (2009) Simulation of naphthalene conversion in biogas initiated by pulsed corona discharges. IEEE Trans Plasma Sci 37(6):911–919CrossRefGoogle Scholar
  13. 13.
    Nair SA, Pemen AJM, Yan K, van Gompel FM, van Leuken HEM, van Heesch EJM, Ptasinski KJ, Drinkenburg AAH (2003) Tar removal from biomass-derived fuel gas by pulsed corona discharges. Fuel Process Technol 84:161–173CrossRefGoogle Scholar
  14. 14.
    Ostapczuk A, Hakoda T, Shimada A, Kojima T (2008) Naphthalene and acenaphthene decomposition by electron beam generated plasma application. Plasma Chem Plasma Process 28:483–494CrossRefGoogle Scholar
  15. 15.
    Yu L, Li X, Tu X, Wang Y, Lu S, Yan J (2010) Decomposition of naphthalene by dc gliding arc gas discharge. J Phys Chem A 114:360–368CrossRefGoogle Scholar
  16. 16.
    Ni MJ, Shen X, Gao X, Wu Z, Lu H, Li Z, Luo Z, Cen KF (2011) Naphthalene decomposition in a DC corona radical shower discharge. J Zhejiang Univ Sci A 12:71–77CrossRefGoogle Scholar
  17. 17.
    Liang W-J, Fang H-P, Li J, Zheng F, Li J-X, Jin Y-Q (2011) Performance of non-thermal DBD plasma reactor during the removal of hydrogen sulfide. J Electrostat 69:206–213CrossRefGoogle Scholar
  18. 18.
    Byeon JH, Park JH, Jo YS, Yoon KY, Hwang J (2010) Removal of gaseous toluene and submicron aerosol particles using a dielectric barrier discharge reactor. J Hazard Mater 175:417–422CrossRefGoogle Scholar
  19. 19.
    Mok YS, Lee S, Chang MS (2009) Destruction of chlorodifluoromethane (CHF2Cl) by using dielectric barrier discharge plasma. IEEE Trans Ind Appl 37:449–455Google Scholar
  20. 20.
    Redolfi M, Aggadi N, Duten X, Touchard S, Pasquiers S, Hassouni K (2009) Oxidation of acetylene in atmospheric pressure pulsed corona discharge cell working in the nanosecond regime. Plasma Chem Plasma Process 29:173–195CrossRefGoogle Scholar
  21. 21.
    Lu B, Ji M, Wang MY, Lv J (2009) Ethanethiol removal using a novel plasma reactor combined with Mn/g–Al2O3. In: International conference on environmental science and information application technology, Wuhan, pp 623–626Google Scholar
  22. 22.
    Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environ Sci Technol 43:2216–2227CrossRefGoogle Scholar
  23. 23.
    Zhu T, Li J, Jin Y, Liang Y, Ma G (2008) Decomposition of benzene by non-thermal plasma processing: photocatalyst and ozone effect. Int J Environ Sci Technol 5:375–384CrossRefGoogle Scholar
  24. 24.
    Blin-Simiand N, Pasquiers S, Jorand F, Postel C, Vacher JR (2009) Removal of formaldehyde in nitrogen and in dry air by a DBD: importance of temperature and role of nitrogen metastable states. J Phys D Appl Phys 42:122003CrossRefGoogle Scholar
  25. 25.
    Lu B, Ji M, Wang M, Lü J (2007) Plasma oxidation of benzene using DBD corona discharges. J Mater Eng Perform 17:428–431CrossRefGoogle Scholar
  26. 26.
    Chang C, Bai H, Lu S (2005) Destruction of styrene in an air stream by packed dielectric barrier discharge reactors. Plasma Chem Plasma Process 25:641–657CrossRefGoogle Scholar
  27. 27.
    Agnihotri S, Cal MP, Prien J (2004) Destruction of 1,1,1-trichloroethane using dielectric barrier discharge nonthermal plasma. J Environ Eng 130:349–355CrossRefGoogle Scholar
  28. 28.
    Lee HM, Chang MB (2003) Abatement of gas-phase p-xylene via dielectric barrier discharges. Plasma Chem Plasma Process 23:541–558CrossRefGoogle Scholar
  29. 29.
    Oda T, Takahashi T, Kohzuma S (2001) Decomposition of dilute trichloroethylene by using nonthermal plasma processing-frequency and catalyst effects. IEEE Trans Ind Appl 37:965–970CrossRefGoogle Scholar
  30. 30.
    Chen J, Su Q, Pan H, Wei J, Zhang X, Shi Y (2009) Influence of balance gas mixture on decomposition of dimethyl sulfide in a wire-cylinder pulse corona reactor. Chemosphere 75:261–265CrossRefGoogle Scholar
  31. 31.
    Guo Y, Ye D, Chen K, He J (2007) Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam. Catal Today 126:328–337CrossRefGoogle Scholar
  32. 32.
    Mok YS, Demidyuk V, Whitehead JC (2008) Decomposition of hydrofluorocarbons in a dielectric-packed plasma reactor. J Phys Chem A 112:6586–6591CrossRefGoogle Scholar
  33. 33.
    Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C, Vacher JR (2008) Plasma reactivity and plasma-surface interactions during treatment of toluene by a dielectric barrier discharge. Plasma Chem Plasma Process 28:429–466CrossRefGoogle Scholar
  34. 34.
    Falkenstein Z (1999) Effects of the O2 concentration on the removal efficiency of volatile organic compounds with dielectric barrier discharges in Ar and N2. J Appl Phys 85:525CrossRefGoogle Scholar
  35. 35.
    Huang L, Nakajo K, Ozawa S, Matsuda H (2001) Decomposition of Dichloromethane in a wire-in-tube pulsed corona reactor. Environ Sci Technol 35:1276–1281CrossRefGoogle Scholar
  36. 36.
    Abdelaziz A, Seto T, Abdel-Salam M, Otani Y (2012) Performance of a surface dielectric barrier discharge based reactor for destruction of naphthalene in an air stream. J Phys D Appl Phys 45:115201CrossRefGoogle Scholar
  37. 37.
    Kogelschatz U, Eliasson B, Egli W (1997) Dielectric-barrier discharges: principle and applications. Le J Phys IV 07:C4-47-C44-66Google Scholar
  38. 38.
    Enloe CL, McHarg MG, McLaughlin TE (2008) Time-correlated force production measurements of the dielectric barrier discharge plasma aerodynamic actuator. J Appl Phys 103:073302CrossRefGoogle Scholar
  39. 39.
    Kim H-H (2004) Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Processes Polym 1:91–110CrossRefGoogle Scholar
  40. 40.
    Itikawa Y (2006) Cross sections for electron collisions with nitrogen molecules. J Phys Chem Ref Data 35:31–53CrossRefGoogle Scholar
  41. 41.
    Herron J (2001) Modeling studies of the formation and destruction of no in pulsed barrier discharges in nitrogen and air. Plasma Chem Plasma Process 21:581–609CrossRefGoogle Scholar
  42. 42.
    Itikawa Y (2009) Cross sections for electron collisions with oxygen molecules. J Phys Chem Ref Data 38:1–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ayman A. Abdelaziz
    • 1
  • Takafumi Seto
    • 2
  • M. Abdel-Salam
    • 3
  • Yoshio Otani
    • 2
  1. 1.Physics Department, Faculty of ScienceAssiut UniversityAssiutEgypt
  2. 2.Department of Chemical and Material Engineering, Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan
  3. 3.Department of Electrical EngineeringAssiut UniversityAssiutEgypt

Personalised recommendations