Plasma Chemistry and Plasma Processing

, Volume 34, Issue 4, pp 825–836 | Cite as

Shielded Sliding Discharge-Assisted Hydrocarbon Selective Catalytic Reduction of NOx over Ag/Al2O3 Catalysts Using Diesel as a Reductant

  • Xiaoying Bao
  • Muhammad Arif Malik
  • Daniel G. Norton
  • Vasile B. Neculaes
  • Karl H. Schoenbach
  • Richard Heller
  • Oltea P. Siclovan
  • Susan E. Corah
  • Antonio Caiafa
  • Louis P. Inzinna
  • Kenneth R. Conway
Original Paper


The nonthermal plasma generated in a shielded sliding discharge reactor was used to reform diesel for the hydrocarbon-selective catalytic reduction (HC-SCR) of NOx on Ag/Al2O3 catalysts. Compared with raw diesel, the reformed diesel enhanced the NOx reduction efficiency, mitigated hydrocarbon poisoning of the catalyst and reduced the fuel penalty for the HC-SCR reaction. The NOx conversion values obtained with a commercial Ag/Al2O3 catalyst exceeded that of a 2.0 wt% Ag/Al2O3 catalyst prepared by wet impregnation. A significant amount of NH3 was produced as a by-product during the HC-SCR reaction, which suggests that further NOx conversion enhancement can be achieved by placing a second NH3-SCR catalyst in series with the Ag/Al2O3 catalyst.


Reforming Diesel NOx SCR Ag/Al2O3 Nonthermal plasma Shielded sliding discharge Flue gas treatment 



This work was supported by General Electric; the Commonwealth Research Commercialization Fund (Grant No. MF13-019) from Virginia’s Center for Innovative Technology; the Frank Reidy Fellowship in Environmental Plasma Research and other internal funds from the Frank Reidy Research Center for Bioelectrics.


  1. 1.
    Kim MH, Nam IS (2005) In: Spivey JJ (ed) Catalysis. RSC, Cambridge, pp 116–185CrossRefGoogle Scholar
  2. 2.
    Iwamoto M, Yahiro H, Yuu Y, Shundo S, Mizuno N (1990) Shokubai 32:430–438Google Scholar
  3. 3.
    Burch R, Breen JP, Meunier FC (2002) Appl Catal B Environ 39:283–303CrossRefGoogle Scholar
  4. 4.
    Käspar J, Fornasiero P, Hickey H (2003) Catal Today 77:419–449CrossRefGoogle Scholar
  5. 5.
    He H, Zhang X, Wu Q, Zhang C, Yu Y (2008) Catal Surv Asia 12:38–55CrossRefGoogle Scholar
  6. 6.
    Roy S, Hegde MS, Madras G (2009) Appl Energy 86:2283–2297CrossRefGoogle Scholar
  7. 7.
    Weibel M, Waldbusser N, Wunsch R, Chatterjee D, Bandl-Konrad B, Krutzsch B (2009) Top Catal 52:1702–1708CrossRefGoogle Scholar
  8. 8.
    Granger P, Parvulescu VI (2011) Chem Rev 111:3155–3207CrossRefGoogle Scholar
  9. 9.
    Kannisto H, Arve K, Pingel T, Hellman A, Härelind H, Eränen K, Olsson E, Skoglundh M, Murzin DY (2013) Catal Sci Technol 3:644–653CrossRefGoogle Scholar
  10. 10.
    Seker E, Cavataio J, Gulari E, Lorpongpaiboon P, Osuwan S (1999) Appl Catal A Gen 183:121–134CrossRefGoogle Scholar
  11. 11.
    Juez AI, Hungria AB, Arias AM, Fuerte A, Garcia MF, Anderson JA, Conesa JC, Soria J (2003) J Catal 217:310–323Google Scholar
  12. 12.
    Kannisto H, Ingelsten HH, Skoglundh M (2009) J Mol Catal A Chem 302:86–96CrossRefGoogle Scholar
  13. 13.
    Hoost TE, Kudla RJ, Collins KM, Chattha MS (1997) Appl Catal B Environ 13:59–67CrossRefGoogle Scholar
  14. 14.
    Meunier FC, Breen JP, Zuzaniuk V, Olsson M, Ross JRH (1999) J Catal 187:493–505CrossRefGoogle Scholar
  15. 15.
    Shimizu K, Shibata J, Yoshida H, Satsuma A, Hattori T (2001) Appl Catal B Environ 30:151–162CrossRefGoogle Scholar
  16. 16.
    Lindfors LE, Eränen K, Klingstedt F, Murzin DY (2004) Top Catal 28:185–189CrossRefGoogle Scholar
  17. 17.
    Bethke KA, Kung HH (1997) J Catal 172:93–102CrossRefGoogle Scholar
  18. 18.
    She X, Stephanopoulos MF (2006) J Catal 237:79–93CrossRefGoogle Scholar
  19. 19.
    Yu Y, He H, Feng Q, Gao H, Yang X (2004) Appl Catal B Environ 49:159–171CrossRefGoogle Scholar
  20. 20.
    Zhang C, He H, Shuai S, Wang J (2007) Environ Pollut 147:415–421CrossRefGoogle Scholar
  21. 21.
    Houel V, Millington P, Rajaram R, Tsolakis A (2007) Appl Catal B Environ 73:203–207CrossRefGoogle Scholar
  22. 22.
    Fernandez JR, Tsolakis A, Ahmadinejad M, Sitshebo S (2010) Energy Fuel 24:992–1000CrossRefGoogle Scholar
  23. 23.
    Sawatmongkhon B, Tsolakis A, Sitshebo S, Fernández JR, Ahmadinejad M, Collier J, Rajaram RR (2010) Appl Catal B Environ 97:373–380CrossRefGoogle Scholar
  24. 24.
    Creaser D, Kannisto H, Sjöblom J, Ingelsten HH (2009) Appl Catal B Environ 90:18–28CrossRefGoogle Scholar
  25. 25.
    Carucci JRH, Arve K, Bártová S, Eränen K, Salmi T, Murzin DY (2011) Catal Sci Technol 1:1456–1465CrossRefGoogle Scholar
  26. 26.
    Satokawa S (2000) Chem Lett 29:294–295CrossRefGoogle Scholar
  27. 27.
    Shibata J, Shimizu K, Satokawa S, Satsuma A, Hattori T (2003) Phys Chem Chem Phys 5:2154–2160CrossRefGoogle Scholar
  28. 28.
    Breen JP, Burch R, Hardacre C, Hill CJ, Rioche C (2007) J Catal 246:1–9CrossRefGoogle Scholar
  29. 29.
    Richter M, Bentrup U, Eckelt R, Schneider M, Pohl MM, Fricke R (2004) Appl Catal B Environ 51:261–274CrossRefGoogle Scholar
  30. 30.
    Kim MK, Kim PS, Baik JH, Nam IS, Cho BK, Oh SH (2011) Appl Catal B Environ 105:1–14CrossRefGoogle Scholar
  31. 31.
    Chansai S, Burch R, Hardacre C (2012) J Catal 295:223–231CrossRefGoogle Scholar
  32. 32.
    Penetrante BM, Brusasco RM, Merritt BT, Pitz WJ, Vogtlin GE (1999) SAE paper no. 1999-01-3637. doi: 10.4271/1999-01-3637
  33. 33.
    Hoard JW, Panov AG (2001) SAE paper no. 2001-01-3512. doi: 10.4271/2001-01-3512
  34. 34.
    Hammer T, Kishimoto T, Krutzsch B, Andorf R, Plog C (2001) SAE paper no. 2001-01-3567. doi: 10.4271/2001-01-3567
  35. 35.
    Miessner H, Francke KP, Rudolph R, Hammer T (2002) Catal Today 75:325–330CrossRefGoogle Scholar
  36. 36.
    Sitshebo S, Tsolakis A, Theinnoi K (2009) Int J Hydrogen Energy 34:7842–7850CrossRefGoogle Scholar
  37. 37.
    Lee DH, Kim KT, Cha MS, Song YH (2010) Int J Hydrogen Energy 35:4668–4675CrossRefGoogle Scholar
  38. 38.
    Cho BK, Lee JH, Crellin CC, Olsona KL, Hilden DL, Kim MK, Kim PS, Heo I, Oh SH, Nam IS (2012) Catal Today 191:20–24CrossRefGoogle Scholar
  39. 39.
    Lee DH, Lee JO, Kim KT, Song YH, Kim E, Han HS (2011) Int J Hydrogen Energy 36:11718–11726CrossRefGoogle Scholar
  40. 40.
    Lee DH, Lee JO, Kim KT, Song YH, Kim E, Han HS (2012) Int J Hydrogen Energy 37:3225–3233CrossRefGoogle Scholar
  41. 41.
    Malik MA, Minamitani Y, Schoenbach KH (2005) IEEE Trans Plasma Sci 33:50–56CrossRefGoogle Scholar
  42. 42.
    Malik MA, Kolb JF, Sun Y, Schoenbach KH (2011) J Hazard Mater 197:220–228CrossRefGoogle Scholar
  43. 43.
    Malik MA, Xiao S, Schoenbach KH (2012) J Hazard Mater 209–210:293–298CrossRefGoogle Scholar
  44. 44.
    Malik MA, Schoenbach KH (2014) Plasma Chem Plasma Process. doi: 10.1007/s11090-014-9528-2 Google Scholar
  45. 45.
    Malik MA, Schoenbach KH (2014) Plasma Chem Plasma Process 34:93–109CrossRefGoogle Scholar
  46. 46.
    Schoenbach KH, Malik MA (2014) Plasma Chem Plasma Process 34:39–54CrossRefGoogle Scholar
  47. 47.
    Malik MA, Schoenbach KH (2012) J Phys D Appl Phys 45:132001CrossRefGoogle Scholar
  48. 48.
    Malik MA, Hughes D, Malik A, Xiao S, Schoenbach KH (2013) Plasma Chem Plasma Process 33:271–279CrossRefGoogle Scholar
  49. 49.
    Khani MR, Guy ED, Gharibi M, Shahabi SS, Khosravi A, Norouzi AA, Shokri B (2014) Chem Eng J 237:169–175CrossRefGoogle Scholar
  50. 50.
    Demidyuk V, Hardacre C, Burch R, Mhadeshwar A, Norton D, Hancu D (2011) Catal Today 164:515–519CrossRefGoogle Scholar
  51. 51.
    Shimizu K, Shibata J, Satsuma A (2006) J Catal 239:402–409CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xiaoying Bao
    • 1
  • Muhammad Arif Malik
    • 2
  • Daniel G. Norton
    • 1
  • Vasile B. Neculaes
    • 1
  • Karl H. Schoenbach
    • 2
  • Richard Heller
    • 2
  • Oltea P. Siclovan
    • 1
  • Susan E. Corah
    • 1
  • Antonio Caiafa
    • 1
  • Louis P. Inzinna
    • 1
  • Kenneth R. Conway
    • 1
  1. 1.General Electric Global Research CenterNiskayunaUSA
  2. 2.Frank Reidy Research Center for BioelectricsOld Dominion UniversityNorfolkUSA

Personalised recommendations