Plasma Chemistry and Plasma Processing

, Volume 34, Issue 4, pp 1019–1031 | Cite as

Atomized Spray Plasma Deposition of Structurally Well-Defined Bioactive Coatings

  • T. J. Wood
  • P. S. Brown
  • J. P. S. Badyal
Original Paper


Structurally well-defined bioactive films have been prepared in a single solventless step by atomizing precursor molecules into a non-equilibrium electrical discharge. By way of example, atomized spray plasma deposition is used to form poly(alkyl acrylate) arrays for phospholipid immobilization, and poly(N-acryloylsarcosine methyl ester) protein-resistant surfaces.

Graphical Abstract


Atomized spray plasma deposition Plasma polymer Phospholipid Lipophilic Protein resistance 



T. J. Wood would like to thank Surface Innovations Ltd. for financial support. The authors are grateful to KODE Biotech Ltd. (NZ) for providing a sample of the phospholipid-biotin conjugate.


  1. 1.
    Hench LL, Wilson J (1984) Surface-active biomaterials. Science 226:630–636CrossRefGoogle Scholar
  2. 2.
    Meyers SR, Grinstaff MW (2012) Biocompatible and bioactive surface modifications for prolonged in vivo efficacy. Chem Rev 112:1615–1632CrossRefGoogle Scholar
  3. 3.
    Messersmith PB (2008) Multitasking in tissues and materials. Science 319:1767–1768CrossRefGoogle Scholar
  4. 4.
    Statz AR, Meagher RJ, Barron AE, Messersmith PB (2005) New peptidomimetic polymers for antifouling surfaces. J Am Chem Soc 127:7972–7973CrossRefGoogle Scholar
  5. 5.
    Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48CrossRefGoogle Scholar
  6. 6.
    Cornell BA, Braach-Maksvytis VLB, King LG, Osman PDJ, Raguse B, Wieczorek L, Pace RJ (1997) A biosensor that uses ion-channel switches. Nature 387:580–583CrossRefGoogle Scholar
  7. 7.
    Stora T, Lakey JH, Vogel H (1999) Ion-channel gating in transmembrane receptor proteins: functional activity in tethered lipid membranes. Angew Chem Int Ed 38:389–392CrossRefGoogle Scholar
  8. 8.
    Plant AL, Gueguetchkeri M, Yap W (1994) Supported phospholipid/alkanethiol biomimetic membranes: insulating properties. Biophys J 67:1126–1133CrossRefGoogle Scholar
  9. 9.
    Naumann CA, Prucker O, Lehmann T, Rühe J, Knoll W, Frank CW (2002) The polymer-supported phospholipid bilayer: tethering as a new approach to substrate-membrane stabilization. Biomacromolecules 3:27–35CrossRefGoogle Scholar
  10. 10.
    van Oudenaarden A, Boxer SG (1999) Brownian ratchets: molecular separations in lipid bilayers supported on patterned arrays. Science 285:1046–1048CrossRefGoogle Scholar
  11. 11.
    Stanish I, Santos JP, Singh A (2001) One-step, chemisorbed immobilization of highly stable, polydiacetylenic phospholipid vesicles onto gold films. J Am Chem Soc 123:1008–1009CrossRefGoogle Scholar
  12. 12.
    Zhang L, Hong L, Yu Y, Bae SC, Granick S (2006) Nanoparticle-assisted surface immobilization of phospholipid liposomes. J Am Chem Soc 128:9026–9027CrossRefGoogle Scholar
  13. 13.
    Marra KG, Winger TM, Hanson SR, Chaikof EL (1997) Cytomimetic biomaterials. 1. In-situ polymerization of phospholipids on an alkylated surface. Macromolecules 30:6483–6488CrossRefGoogle Scholar
  14. 14.
    Mornet S, Lambert O, Duguet E, Brisson A (2005) The formation of supported lipid bilayers on silica nanoparticles revealed by cryoelectron microscopy. Nano Lett 5:281–285CrossRefGoogle Scholar
  15. 15.
    Kallury KMR, Lee WE, Thompson M (1992) Enhancement of the thermal and storage stability of urease by covalent attachment to phospholipid-bound silica. Anal Chem 64:1062–1068CrossRefGoogle Scholar
  16. 16.
    Brown HA, Murphy RC (2009) Working towards an exegesis for lipids in biology. Nat Chem Biol 5:602–606CrossRefGoogle Scholar
  17. 17.
    Hsiue G-H, Lee S-D, Chang PC-T, Kao C-Y (1998) Surface characterization and biological properties study of silicone rubber membrane grafted with phospholipid as biomaterial via plasma induced graft copolymerization. J Biomed Mater Res 42:134–147CrossRefGoogle Scholar
  18. 18.
    Korematsu A, Takemoto Y, Nakaya T, Inoue H (2002) Synthesis, characterization and platelet adhesion of segmented polyurethanes grafted phospholipid analogous vinyl monomer on surface. Biomaterials 23:263–271CrossRefGoogle Scholar
  19. 19.
    Edinger K, Goelzhaeuser A, Demota K, Woell C, Grunze M (1993) Formation of self-assembled monolayers of n-alkanethiols on gold: a scanning tunneling microscopy study on the modification of substrate morphology. Langmuir 9:4–8CrossRefGoogle Scholar
  20. 20.
    Meuse CW, Niaura G, Lewis ML, Plant AL (1998) Assessing the molecular structure of alkanethiol monolayers in hybrid bilayer membranes with vibrational spectroscopies. Langmuir 14:1604–1611CrossRefGoogle Scholar
  21. 21.
    Terrettaz S, Stora T, Duschl C, Vogel H (1993) Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance. Langmuir 9:1361–1369CrossRefGoogle Scholar
  22. 22.
    Lingler S, Rubinstein I, Knoll W, Offenhäusser A (1997) Fusion of small unilamellar lipid vesicles to alkanethiol and thiolipid self-assembled monolayers on gold. Langmuir 13:7085–7091CrossRefGoogle Scholar
  23. 23.
    Wagner ML, Tamm LK (2000) Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys J 79:1400–1414CrossRefGoogle Scholar
  24. 24.
    Atanasov V, Knorr N, Duran RS, Ingebrandt S, Offenhäusser A, Knoll W, Köper I (2005) Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophys J 89:1780–1788CrossRefGoogle Scholar
  25. 25.
    Omae I (2003) General aspects of tin-free antifouling paints. Chem Rev 103:3431–3448CrossRefGoogle Scholar
  26. 26.
    Tria MCR, Grande CDT, Ponnapati RR, Advincula RC (2010) Electrochemical deposition and surface-initiated RAFT polymerization: protein and cell-resistant PPEGMEMA polymer brushes. Biomacromolecules 11:3422–3431CrossRefGoogle Scholar
  27. 27.
    Prime KL, Whitesides GM (1991) Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252:1164–1167CrossRefGoogle Scholar
  28. 28.
    Dalsin JL, Hu B-H, Lee BP, Messersmith PB (2003) Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc 125:4253–4258CrossRefGoogle Scholar
  29. 29.
    Christman KL, Schopf E, Broyer RM, Li RC, Chen Y, Maynard HD (2009) Positioning multiple proteins at the nanoscale with electron beam cross-linked functional polymers. J Am Chem Soc 131:521–527CrossRefGoogle Scholar
  30. 30.
    Huber DL, Manginell RP, Samara MA, Kim B-I, Bunker BC (2003) Programmed adsorption and release of proteins in a microfluidic device. Science 301:352–354CrossRefGoogle Scholar
  31. 31.
    Luk Y-FY, Kato M, Mrksich M (2000) Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16:9604–9608CrossRefGoogle Scholar
  32. 32.
    Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DR, Whitesides GM (2001) Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 17:6336–6343CrossRefGoogle Scholar
  33. 33.
    Kane RS, Deschatelets P, Whitesides GM (2003) Kosmotropes form the basis of protein-resistant surfaces. Langmuir 19:2388–2391CrossRefGoogle Scholar
  34. 34.
    Groll J, Amirgoulova EV, Ameringer T, Heyes CD, Röcker C, Nienhaus GU, Möller M (2004) Biofunctionalized, ultrathin coatings of cross-linked star-shaped poly(ethylene oxide) allow reversible folding of immobilized proteins. J Am Chem Soc 126:4234–4239CrossRefGoogle Scholar
  35. 35.
    Zhang F, Kang ET, Neoh KG, Wang P, Tan KL (2001) Modification of Si(100) surface by the grafting of poly(ethylene glycol) for reduction in protein adsorption and platelet adhesion. J Biomed Mater Res 56:324–332CrossRefGoogle Scholar
  36. 36.
    Kingshott P, Thissen H, Griesser HJ (2002) Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials 23:2043–2056CrossRefGoogle Scholar
  37. 37.
    Zhang Z, Menges B, Timmons RB, Knoll W, Förch R (2003) Surface plasmon resonance studies of protein binding on plasma polymerized di(ethylene glycol) monovinyl ether films. Langmuir 19:4765–4770CrossRefGoogle Scholar
  38. 38.
    Shen M, Wagner MS, Castner DG, Ratner BD, Horbett TA (2003) Multivariate surface analysis of plasma-deposited tetraglyme for reduction of protein adsorption and monocyte adhesion. Langmuir 19:1692–1699CrossRefGoogle Scholar
  39. 39.
    Teare DOH, Schofield WCE, Garrod RP, Badyal JPS (2005) Poly(N-acryloylsarcosine methyl ester) protein-resistant surfaces. J Phys Chem B 109:20923–20928CrossRefGoogle Scholar
  40. 40.
    Chapman RG, Ostuni E, Liang MN, Meluleni G, Kim E, Yan L, Pier G, Warren HS, Whitesides GM (2001) Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria. Langmuir 17:1225–1233CrossRefGoogle Scholar
  41. 41.
    Lasseter TL, Clare BH, Abbott NL, Hamers RJ (2004) Covalently modified silicon and diamond surfaces: resistance to nonspecific protein adsorption and optimization for biosensing. J Am Chem Soc 126:10220–10221CrossRefGoogle Scholar
  42. 42.
    Teare DOH, Barwick DC, Schofield WCE, Garrod RP, Ward LJ, Badyal JPS (2005) Substrate-independent approach for polymer brush growth by surface atom transfer radical polymerization. Langmuir 21:11425–11430CrossRefGoogle Scholar
  43. 43.
    Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG (1989) Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 111:321–335CrossRefGoogle Scholar
  44. 44.
    Stapleton JJ, Daniel TA, Uppili S, Cabarcos OM, Naciri J, Shashidhar R, Allara DL (2005) Self-assembly, characterization, and chemical stability of isocyanide-bound molecular wire monolayers on gold and palladium surfaces. Langmuir 21:11061–11070CrossRefGoogle Scholar
  45. 45.
    Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554CrossRefGoogle Scholar
  46. 46.
    Lee M-T, Hsueh C–C, Freund MS, Ferguson GS (1998) Air oxidation of self-assembled monolayers on polycrystalline gold: the role of the gold substrate. Langmuir 14:6419–6423CrossRefGoogle Scholar
  47. 47.
    Yasuda H (1985) Plasma polymerization. Academic Press, OrlandoGoogle Scholar
  48. 48.
    Ryan ME, Hynes AM, Badyal JPS (1996) Pulsed plasma polymerization of maleic anhydride. Chem Mater 8:37–42CrossRefGoogle Scholar
  49. 49.
    Friedrich J (2011) Mechanisms of plasma polymerization—reviewed from a chemical point of view. Plasma Processes Polym 8:783–802CrossRefGoogle Scholar
  50. 50.
    Ward LJ, Schofield WCE, Badyal JPS, Goodwin AJ, Merlin PJ (2003) Atmospheric pressure glow discharge deposition of polysiloxane and SiOx films. Langmuir 19:2110–2114CrossRefGoogle Scholar
  51. 51.
    Ward LJ, Schofield WCE, Badyal JPS, Goodwin AJ, Merlin PJ (2003) Atmospheric pressure plasma deposition of structurally well-defined polyacrylic acid films. Chem Mater 15:1466–1469CrossRefGoogle Scholar
  52. 52.
    Wood TJ, Badyal JPS (2013) Atomized spray plasma deposition (ASPD) of structurally well-defined alkyl functionalized layers. Surf Coat Technol 227:28–31CrossRefGoogle Scholar
  53. 53.
    Friedman RM, Hudis J, Perlman ML (1972) Chemical effects on linewidths observed in photoelectron spectroscopy. Phys Rev Lett 29:692–695CrossRefGoogle Scholar
  54. 54.
    Evans JF, Gibson JH, Moulder JF, Hammond JS, Goretzki H (1984) Angle resolved ESCA analysis of plasma modified polysterene. Fresenius J Anal Chem 319:841–844CrossRefGoogle Scholar
  55. 55.
    Lovering D (1998) NKD-6000 technical manual. Aquila Instruments, CambridgeGoogle Scholar
  56. 56.
    Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press, LondonGoogle Scholar
  57. 57.
    Okouchi M, Yamaji Y, Yamauchi K (2006) Contact angle of poly(alkyl methacrylate)s and effects of the alkyl group. Macromolecules 39:1156–1159CrossRefGoogle Scholar
  58. 58.
    Lau KKS, Gleason KK (2006) Initiated chemical vapor deposition (iCVD) of poly(alkyl acrylates): an experimental study. Macromolecules 39:3688–3694CrossRefGoogle Scholar
  59. 59.
    Harris LG, Schofield WCE, Doores KJ, Davis BG, Badyal JPS (2009) Rewritable glycochips. J Am Chem Soc 131:7755–7761CrossRefGoogle Scholar
  60. 60.
    Ultrasonic-nozzle Product Information, Sono-tek, USA, 1996Google Scholar
  61. 61.
    Kolluri OS (1998) Ultrasonic nozzle feed for plasma deposited film networks. PCT International Patent No. WO 98/10116Google Scholar
  62. 62.
    Altmann K, Schulze R-D, Hidde G, Friedrich J (2013) Electrospray ionization for deposition of ultra-thin polymer layers—principle, electrophoretic effect and applications. J Adhes Sci Technol 27:988–1005CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Science Laboratories, Department of ChemistryDurham UniversityDurhamUK

Personalised recommendations