Advertisement

Plasma Chemistry and Plasma Processing

, Volume 34, Issue 2, pp 239–257 | Cite as

On the LPCVD-Formed SiO2 Etching Mechanism in CF4/Ar/O2 Inductively Coupled Plasmas: Effects of Gas Mixing Ratios and Gas Pressure

  • Jinyoung Son
  • Alexander Efremov
  • Inwoo Chun
  • Geun Young Yeom
  • Kwang-Ho Kwon
Original Paper

Abstract

An investigation of etching mechanism of low-temperature SiO2 thin films in CF4/Ar/O2 inductively coupled plasmas at constant input power (900 W) and bias power (200 W) was carried out. It was found that that the variations of Ar/O2 mixing ratio (0–50 %) at constant 50 % CF4 fraction as well as the change in gas pressure (4–10 mTorr) resulted in non-monotonic SiO2 etching rates. The zero-dimensional plasma model with Langmuir probe diagnostics data provided the detailed information on formation-decay kinetics for plasma active species. The model-based analysis of etching kinetics showed that these effects were not connected with the non-monotonic change of fluorine atom density (as was found in several works for the binary CF4/O2 system), but resulted from the decrease in reaction probability and with the transition from neutral-flux to ion-flux-limited regimes of ion assisted chemical reaction.

Keywords

Low-temperature SiO2 CF4 plasma Diagnostics Modeling Etching mechanism 

Notes

Acknowledgments

This work was supported by the Industrial Strategic Technology Development Program (10041681, Development of fundamental technology for 10 nm process semiconductor and 10 G size large area process with high plasma density and VHF condition) funded by the Ministry of Knowledge Economy (MKE, Korea).

References

  1. 1.
    Wolf S, Tauber RN (2000) Silicon Processing for the VLSI Era, vol 1. Prosess Technology, Lattice Press, New YorkGoogle Scholar
  2. 2.
    Rossnagel SM, Cuomo JJ, Westwood WD (eds) (1990) Handbook of plasma processing technology. Noyes Publications, Park Ridge, NJGoogle Scholar
  3. 3.
    Lindroos V, Tilli M, Lehto A, Motooka T (2010) Handbook of silicon based MEMS materials and technologies. William Andrew Applied Science Publishers, OxfordGoogle Scholar
  4. 4.
    Lyshevski SE (2002) MEMS and NEMS: systems, devices, and structures. CRC Press, New YorkGoogle Scholar
  5. 5.
    Rooth JR (1995) Industrial plasma engineering. IOP Publishing LTD, PhiladelphiaCrossRefGoogle Scholar
  6. 6.
    Coburn JW (1982) Plasma etching and reactive ion etching. AVS Monograph Series, New YorkGoogle Scholar
  7. 7.
    Chapman B (1980) Glow discharge processes: sputtering and plasma etching. John Wiley & Sons, New YorkGoogle Scholar
  8. 8.
    Roosmalen AJ, Baggerman JAG (1991) S. J. H. Brader Dry etching for VLSI. Plenum Press, New YorkCrossRefGoogle Scholar
  9. 9.
    Gray DC, Tepermeister I, Sawin HH (1993) J Vac Sci Technol A 11:1243CrossRefGoogle Scholar
  10. 10.
    Winters HF, Coburn JW, Chuang TJ (1983) J Vac Sci Technol B 1:469CrossRefGoogle Scholar
  11. 11.
    Mogab CJ, Adams AC, Flamm DL (1978) J Appl Phys 49:3796CrossRefGoogle Scholar
  12. 12.
    Butterbaugh JW, Gray DC, Sawin HH (1991) J Vac Sci Technol B 9:1461CrossRefGoogle Scholar
  13. 13.
    Smolinsky G, Flamm DL (1979) J Appl Phys 50:4982CrossRefGoogle Scholar
  14. 14.
    Chen M, Minkiewicz VJ, Lee K (1979) J Electrochem Soc 126:194CrossRefGoogle Scholar
  15. 15.
    Knizikevičius R (2010) Acta Phys Pol A 117:478Google Scholar
  16. 16.
    Kimura T, Noto M (2006) J Appl Phys 100:063303CrossRefGoogle Scholar
  17. 17.
    Plumb IC, Ryan KR (1986) Plasma Chem Plasma Proc 6:205CrossRefGoogle Scholar
  18. 18.
    Venkatesan SP, Trachtenberg I, Edgar TF (1990) J Electrochem Soc 137:2280CrossRefGoogle Scholar
  19. 19.
    Schoenborn Ph, Patrick R, Baltes HP (1989) J Electrochem Soc 136:199CrossRefGoogle Scholar
  20. 20.
    Kim M, Min N-K, Efremov A, Lee HW, Park C-S, Kwon K-H (2008) J Mater Sci: Mater Electron 19:957Google Scholar
  21. 21.
    Kimura T, Hanaki K (2008) Jpn J Appl Phys 47:8546CrossRefGoogle Scholar
  22. 22.
    Johnson EO, Malter L (1950) Phys Rev 80:58CrossRefGoogle Scholar
  23. 23.
    Sugavara M (1998) Plasma etching: fundamentals and applications. Oxford University Press, New YorkGoogle Scholar
  24. 24.
    Efremov A, Min N-K, Choi B-G, Baek K-H, Kwon K-H (2008) J Electrochem Soc 155:D777CrossRefGoogle Scholar
  25. 25.
    Efremov AM, Kim D-P, Kim C-I (2004) Vacuum 75:133CrossRefGoogle Scholar
  26. 26.
    Kimura T, Ohe K (1999) Plasma Sources Sci Technol 8:553CrossRefGoogle Scholar
  27. 27.
    Kimura T, Ohe K (2002) J Appl Phys 92:1780CrossRefGoogle Scholar
  28. 28.
    Bose D, Rauf S, Hash DB, Govindan TR, Meyyappan M (2004) J Vac Sci Technol A 22:2290CrossRefGoogle Scholar
  29. 29.
    NIST Chemical Kinetics Database http://kinetics.nist.gov/kinetics/index.jsp
  30. 30.
    Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New YorkGoogle Scholar
  31. 31.
    Lee C, Graves DB, Lieberman MA (1996) Plasma Chem Plasma Proc 16:99CrossRefGoogle Scholar
  32. 32.
    Efremov AM, Kim DP, Kim CI (2004) IEEE Trans Plasma Sci 32:1344CrossRefGoogle Scholar
  33. 33.
    Efremov AM, Kim DP, Kim CI (2005) Thin Solid Films 474:267CrossRefGoogle Scholar
  34. 34.
    Lide DR (1998–1999) Handbook of chemistry and physics. CRC Press, New YorkGoogle Scholar
  35. 35.
    Schaepkens M, Standaert TEFM, Rueger NR, Sebel PGM, Oehrlein GS, Cook JM (1999) J Vac Sci Technol A 17:26CrossRefGoogle Scholar
  36. 36.
    Zhang D, Kushner MJ (2001) J Vac Sci Technol A 19:524CrossRefGoogle Scholar
  37. 37.
    Kwon O, Bai B, Sawin HH (2006) J Vac Sci Technol A 24:1920CrossRefGoogle Scholar
  38. 38.
    Gudmundsson JT (2001) Plasma Sources Sci Technol 10:76CrossRefGoogle Scholar
  39. 39.
    Ashida S, Lee C, Lieberman MA (1995) J. Vac. Sci. Technol. A 13(5):2498Google Scholar
  40. 40.
    Hioki K, Hirata H, Matsumura S, Lj. Petrović Z, Makabe T (2000) J Vac Sci Technol A 8(3):864Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jinyoung Son
    • 1
  • Alexander Efremov
    • 2
  • Inwoo Chun
    • 1
  • Geun Young Yeom
    • 3
  • Kwang-Ho Kwon
    • 1
  1. 1.Department of Control and Instrumentation EngineeringKorea UniversitySejongSouth Korea
  2. 2.Department of Electronic Devices and Materials TechnologyState University of Chemistry and TechnologyIvanovoRussia
  3. 3.Department of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonSouth Korea

Personalised recommendations