Advertisement

Plasma Chemistry and Plasma Processing

, Volume 34, Issue 3, pp 559–577 | Cite as

Two-Temperature Chemical-Nonequilibrium Modelling of a High-Velocity Argon Plasma Flow in a Low-Power Arcjet Thruster

  • Hai-Xing Wang
  • Wei-Ping Sun
  • Su-Rong Sun
  • A. B. Murphy
  • Yiguang Ju
Original Paper

Abstract

A numerical simulation has been performed of a high-velocity argon plasma arc flow in a low power arcjet including a finite-rate chemical kinetic model. Electrons, ions, molecular ions (\( {\text{Ar}}_{2}^{ + } \)), neutral atoms including the ground and excited argon atoms (Ar*) are treated as separate species in the plasma mixture. The chemical reactions considered are excitation, de-excitation, ionization and recombination processes, in which reactions involving excited argon atoms (Ar*) and molecular ions (\( {\text{Ar}}_{2}^{ + } \)) are taken into account. The relative importance of different production and loss processes in determining the densities of excited argon atoms and ions is calculated inside the constrictor and expansion portion of the nozzle. The roles of the excited argon atoms and molecular ions are investigated. It is found that excited argon atoms play an important role in the ionization of argon atoms in the core of plasma arc, while the molecular ions have a significant effect on the recombination process at the arc fringes inside the constrictor and in the arc attachment zone of the anode.

Keywords

Two-temperature Chemical-nonequilibrium Plasma flow 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China. (Grant Nos. 11275021, 11072020, 50836007).

References

  1. 1.
    Pfender E (1999) Thermal plasma technology: where do we stand and where are we going? Plasma Chem Plasma Process 19(1):1–31CrossRefGoogle Scholar
  2. 2.
    Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kroesen G, Whitehead JC, Murphy AB, Gutsol AF, Starikovskaia S, Kortshagen U, Boeuf JP, Sommerer TJ, Kushner MJ, Czarnetzki U, Mason N (2012) The 2012 plasma roadmap. J Phys D Appl Phys 45(25):253001CrossRefGoogle Scholar
  3. 3.
    Pan WX, Meng X, Li T, Chen X, Wu CK (2007) Comparative observation of Ar, Ar–H2 and Ar–N2 DC arc plasma jets and their arc root behaviour at reduced pressure. Plasma Sci Technol 9(2):152–157CrossRefGoogle Scholar
  4. 4.
    Katsurayama H, Abe T (2013) Thermochemical nonequilibrium modeling of a low-power argon arcjet wind tunnel. J Appl Phys 113(5):053304CrossRefGoogle Scholar
  5. 5.
    Takahashi Y, Kihara H, Abe K (2010) The effects of radiative heat transfer in arc-heated nonequilibrium flow simulation. J Phys D Appl Phys 43(18):185201CrossRefGoogle Scholar
  6. 6.
    Martinez-Sanchez M, Miller SA (1996) Arcjet modeling: status and prospects. J Propuls Power 12(6):1035–1043CrossRefGoogle Scholar
  7. 7.
    Rat V, Murphy AB, Aubreton J, Elchinger MF, Fauchais P (2008) Treatment of non-equilibrium phenomena in thermal plasma flows. J Phys D Appl Phys 41(18):183001CrossRefGoogle Scholar
  8. 8.
    Butler GW, Boyd ID, Cappelli MA (1995) Non-equilibrium flow phenomena in low power hydrogen arcjets. In: Proceedings of 31st AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, AIAA-95-2819, San DiegoGoogle Scholar
  9. 9.
    Cappelli MA, Storm PV (1996) Interior plasma diagnostics of arcjet thrusters. J Propul Power 12(6):1070–1076CrossRefGoogle Scholar
  10. 10.
    Megli TW, Krier H, Burton RL, Mertogul A (1996) Two-temperature plasma modeling of nitrogen/hydrogen arcjets. J Propuls Power 12(6):1062–1069CrossRefGoogle Scholar
  11. 11.
    Megli TW, Lu JQ, Krier H, Burton RL (1998) Modeling plasma processes in 1-kilowatt hydrazine arcjet thrusters. J Propuls Power 14(1):29–36CrossRefGoogle Scholar
  12. 12.
    Miller SA, Martinez-Sanchez M (1996) Two-fluid nonequilibrium simulation of hydrogen arcjet thrusters. J Propuls Power 12(1):112–119CrossRefGoogle Scholar
  13. 13.
    Chang CH, Ramshaw JD (1994) Numerical simulation of nonequilibrium effects in an argon plasma jet. Phys Plasmas 1(11):3698–3708CrossRefGoogle Scholar
  14. 14.
    Colonna G, Capitelli M (2001) Self-consistent model of chemical, vibrational, electron kinetics in nozzle expansion. J Thermophys Heat Transf 15(3):308–316CrossRefGoogle Scholar
  15. 15.
    Bogaerts A, Gijbels R (1999) Role of Ar2 + and Ar2 + ions in a direct current argon glow discharge: a numerical description. J Appl Phys 86(8):4124–4133CrossRefGoogle Scholar
  16. 16.
    Baeva M, Bösel A, Ehlbeck J, Loffhagen D (2012) Modeling of microwave-induced plasma in argon at atmospheric pressure. Phys Rev E 85(5):056404CrossRefGoogle Scholar
  17. 17.
    Capitelli M, Celiberto R, Gorse C, Laricchiuta A, Pagano D, Traversa P (2004) Transport properties of local thermodynamic equilibrium hydrogen plasmas including electronically excited states. Phys Rev E 69(2):026412CrossRefGoogle Scholar
  18. 18.
    Braun CG, Kunc JA (1987) Collisional radiative coefficients from a three level atomic model in nonequilibrium argon plasmas. Phys Fluids 30(2):499–509CrossRefGoogle Scholar
  19. 19.
    Zhu XM, Pu YK (2010) A simple collisional–radiative model for low-temperature argon discharges with pressure ranging from 1 Pa to atmospheric pressure: kinetics of Paschen 1 s and 2p levels. J Phys D Appl Phys 43(1):015204CrossRefGoogle Scholar
  20. 20.
    Bond JW (1957) Structure of a shock front in argon. Phys Rev 105(6):1683–1694CrossRefGoogle Scholar
  21. 21.
    Hoffert MI, Lien H (1967) Quasi-one-dimensional, nonequilibrium gas dynamics of partially ionized two-temperature argon. Phys Fluids 10(8):1769–1777CrossRefGoogle Scholar
  22. 22.
    Bultel A, Ootegem B, Bourdon A, Vervisch P (2002) Influence of Ar2 + in an argon collisional–radiative model. Phys Rev E 65(4):046406CrossRefGoogle Scholar
  23. 23.
    Jonkers J, Sande M, Sola A, Gamero A, Rodero A, Mullen J (2003) The role of molecular rare gas ions in plasmas operated at atmospheric pressure. Plasma Sources Sci Technol 12(3):464–474CrossRefGoogle Scholar
  24. 24.
    Moeller T, Rhodes R, Keefer D, Sedghi-Nasab A, Ruyten W (1992) Comparison of experimental and numerical results for an argon arcjet. In: Proceedings of 28th AIAA/SAE/ASME/ASEE joint propulsion conference and exhibit, AIAA-92-3105, NashvilleGoogle Scholar
  25. 25.
    Wang HX, Wei FZ, Murphy AB, Liu Y (2012) Numerical investigation of the plasma flow through the constrictor of arc-heated thrusters. J Phys D Appl Phys 45(23):235202CrossRefGoogle Scholar
  26. 26.
    Wang HX, Geng JY, Chen X, Pan WX, Murphy AB (2010) Modeling study on the flow, heat transfer and energy conversion characteristics of low-power arc-heated hydrogen/nitrogen thrusters. Plasma Chem Plasma Process 30(6):707–731CrossRefGoogle Scholar
  27. 27.
    Wang HX, Chen X, Pan WX, Murphy AB, Geng JY, Jia SX (2010) Modelling study to compare the flow and heat transfer characteristics of low-power hydrogen, nitrogen and argon arc-heated thrusters. Plasma Sci Technol 12(6):692–701CrossRefGoogle Scholar
  28. 28.
    Ramshaw JD, Chang CH (1993) Ambipolar diffusion in two-temperature multicomponent plasmas. Plasma Chem Plasma Process 13(3):489–498CrossRefGoogle Scholar
  29. 29.
    Bartosiewicz Y, Proulx P, Mercadier Y (2002) A self-consistent two-temperature model for the computation of supersonic argon plasma jets. J Phys D Appl Phys 35(17):2139–2148CrossRefGoogle Scholar
  30. 30.
    Beulens JJ, Milojevic D, Schram DC, Vallinga PM (1991) A two-dimensional nonequilibrium model of cascaded arc plasma flows. Phys Fluids B 3(9):2548–2557CrossRefGoogle Scholar
  31. 31.
    Hsu KC (1982) A self-consistent model for the high intensity free-burning argon arc. PhD dissertation, University of MinnesotaGoogle Scholar
  32. 32.
    Mitchner M, Kruger CH (1973) Partially ionized gases. Wiley, New YorkGoogle Scholar
  33. 33.
    Sleziona PC, Auweter-Kurtz M, Schrade HO (1992) Numerical calculation of nozzle type and cylindrical MPD thruster. In: Proceedings of 28th AIAA/SAE/ASME/ASEE joint propulsion conference and exhibit, AIAA-92-3296, NashvilleGoogle Scholar
  34. 34.
    Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New YorkGoogle Scholar
  35. 35.
    Devoto RS (1973) Transport coefficients of ionized argon. Phys Fluids 16(5):616–623CrossRefGoogle Scholar
  36. 36.
    Rat V, André P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2001) Transport properties in a two-temperature plasma: theory and application. Phys Rev E 64(2):026409CrossRefGoogle Scholar
  37. 37.
    Murphy AB, Arundell CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas. Plasma Chem Plasma Process 14(4):451–490CrossRefGoogle Scholar
  38. 38.
    Murphy AB (1997) Transport coefficients of helium and argon–helium plasmas. IEEE T Plasma Sci 25(5):809–814CrossRefGoogle Scholar
  39. 39.
    Murphy AB (2000) Transport coefficients of hydrogen and argon–hydrogen plasmas. Plasma Chem Plasma Process 20(3):279–297CrossRefGoogle Scholar
  40. 40.
    Rat V, André P, Aubreton J, Elchinger MF, Fauchais P, Vacher D (2002) Transport coefficients including diffusion in a two-temperature argon plasma. J Phys D Appl Phys 35(10):981–991CrossRefGoogle Scholar
  41. 41.
    Wang HX, Chen SQ, Chen X (2012) Thermodynamic and transport properties of two-temperature lithium plasmas. J Phys D Appl Phys 45(16):165202CrossRefGoogle Scholar
  42. 42.
    Chen SQ, Wang HX (2012) Transport properties of lithium plasma. Chin Phys Lett 29(2):025202CrossRefGoogle Scholar
  43. 43.
    Shon JW, Kushner MJ (1994) Excitation mechanisms and gain modeling of the high-pressure atomic Ar laser in He/Ar mixtures. J Appl Phys 75(4):1883–1890CrossRefGoogle Scholar
  44. 44.
    Bogaerts A, Gijbels R (1995) Modeling of metastable argon atoms in a direct-current glow discharge. Phys Rev A 52(5):3743–3751CrossRefGoogle Scholar
  45. 45.
    Fridman AM (2008) Plasma chemistry. Cambridge University Press, New YorkCrossRefGoogle Scholar
  46. 46.
    Igra O (1975) Supersonic expansion on non-equilibrium plasmas. Prog Aerosp Sci 16(3):299–366CrossRefGoogle Scholar
  47. 47.
    Byron S, Stabler RC, Bortz PI (1962) Electron-ion recombination by collisional and radiative processes. Phys Rev Lett 8(9):376–379CrossRefGoogle Scholar
  48. 48.
    Curran FM, Manzella DH (1989) The effect of electrode configuration on arcjet performance. In: Proceedings of 25th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, AIAA-89-2722, MontereyGoogle Scholar
  49. 49.
    Tiliakos NT, Burton RL, Krier H (1996) Energy transfer to the anode of a 1 kW arcjet. In: Proceedings of 32nd AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, AIAA-96-2964, Lake Buena VistaGoogle Scholar
  50. 50.
    Auweter-Kurtz M, Kurtz HL, Laure S (1996) Plasma generators for reentry simulation. J Propuls Power 12(6):1053–1061CrossRefGoogle Scholar
  51. 51.
    Schönemann AT, Auweter-Kurtz M, Habiger HA, Sleziona PC, Stöckle T (1994) Analysis of the argon additive influence on a nitrogen arcjet flow. J Thermophys Heat Transf 8(3):466–472CrossRefGoogle Scholar
  52. 52.
    Huang HJ, Pan WX, Wu CK (2008) Arc root motion in an argon-hydrogen DC plasma torch. IEEE Trans Plasma Sci 36(4):1050–1051CrossRefGoogle Scholar
  53. 53.
    Ruyten WM, Keefer D (1993) Two-beam multiplexed laser-induced fluorescence measurements of an argon arcjet plume. AIAA J 31(11):2083–2089CrossRefGoogle Scholar
  54. 54.
    Ruyten WM, Keefer, D (1992) Characterization of electric thruster plumes using multiplexed laser induced fluorescence measurements. In: Proceedings of 23th plasmadynamics and laser conferences, AIAA-92-2965, NashvilleGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hai-Xing Wang
    • 1
  • Wei-Ping Sun
    • 1
  • Su-Rong Sun
    • 1
  • A. B. Murphy
    • 2
  • Yiguang Ju
    • 3
  1. 1.School of AstronauticsBeijing University of Aeronautics and AstronauticsBeijingChina
  2. 2.CSIRO Materials Science and EngineeringLindfieldAustralia
  3. 3.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations