Plasma Chemistry and Plasma Processing

, Volume 34, Issue 3, pp 363–376 | Cite as

Plasma Processing and Polymers: A Personal Perspective

Original Paper


Low-temperature plasma science and technology has made enormous strides during the past half-century. To a significant extent, the driver has been integrated circuit (IC) processing, because without plasma-based etching and deposition techniques, the progression of Moore’s law would have ceased its course long ago. Scientific and technological advances no less spectacular than those in the IC sector, and of comparable economic impact, have occurred in the area of plasmas and polymers, where a third process type, surface modification, can be added to those, etching—or ablation, and deposition, mentioned above. In this article, we start by listing a number of particular features associated with the exposure of polymers to low-temperature plasmas, for example the liberation of volatile molecular fragments from the surface due to bond scissions, the accompanying creation of free radicals, cross-linking and grafting reactions induced by this and by vacuum-ultraviolet photon irradiation from excited species in the plasma, etc. All these aspects are of far lesser impact, if any at all, when the same plasmas are in contact with inorganic surfaces. We then list some high-volume industrial processes and operational details drawn from diverse economic sectors. These are accompanied by detailed example-cases from our own laboratories, based on both low- and atmospheric-pressure low-temperature plasma processes.


Plasma processing Polymers Personal perspective 



The author wishes to express his deepest gratitude to the many gifted individuals with whom he has had the good fortune to collaborate over the years: senior scientists from his own or other institutions, post-doctoral researchers, and graduate students, as well as skilled technical personnel. Their collective contributions to what we have jointly accomplished cannot be overstated. He also wishes to acknowledge financial support from Canadian sources, both federal and provincial, most particularly the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institutes for Health Research (CIHR), the Fonds québecois de la recherche sur la nature et les technologies (FQRNT), Nano Québec, and others.


  1. 1.
    Hollahan JR, Bell AT (1974) Techniques and applications of plasma chemistry. Wiley, New YorkGoogle Scholar
  2. 2.
    Hudis M (1974) Plasma treatment of solid materials. In: Hollahan JR, Bell AT (eds) Techniques and applications of plasma chemistry. Wiley, New YorkGoogle Scholar
  3. 3.
    Brock DC (ed) (2006) Understanding Moore’s law: four decades of innovation. Chemical Heritage Press, PhiladelphiaGoogle Scholar
  4. 4.
    Einspruch NG, Brown DM (eds) (1984) VLSI Electronics Microstructure Science, Vol. 8. Plasma processing for VLSI. Academic, OrlandoGoogle Scholar
  5. 5.
    d’Agostino R, Favia P, Oehr C, Wertheimer MR (2005) Plasma Process Polym 2:7–15CrossRefGoogle Scholar
  6. 6.
    Bondt, Deimann, van Troostwijk, Lauwerenburg, cited by Fourcroy J (1796) Ann Chem 21:58Google Scholar
  7. 7.
    Berthelot M (1863) Ann Chim Phys 6/7:53Google Scholar
  8. 8.
    Berthelot M (1869) Compt Rend Acad Sci 67:1141Google Scholar
  9. 9.
    de Wilde P (1874) Ber Dtsch Chem Ges 7:352–357CrossRefGoogle Scholar
  10. 10.
    Thenard P, Thenard A (1874) Compt Rend Acad Sci 78:219–221Google Scholar
  11. 11.
    Miller SL (1953) Science 117:528–529CrossRefGoogle Scholar
  12. 12.
    Rossmann K (1956) J Polym Sci 19:141–144CrossRefGoogle Scholar
  13. 13.
    Goodman J (1960) J Polym Sci Lett Ed 44:551–552CrossRefGoogle Scholar
  14. 14.
    Bradley A, Fales JD (1971) Chem Tech 1:232–237Google Scholar
  15. 15.
    Yasuda HK (1985) Plasma polymerization. Academic Press, OrlandoGoogle Scholar
  16. 16.
    Roth JR (2001) Industrial plasma engineering Applications in nonthermal plasma processing. Inst. Phys. (IOP) Publishing, BristolGoogle Scholar
  17. 17.
    Hippler R, Kersten H, Schmidt M, Schoenbach KH (eds) (2008) Low temperature plasmas. Wiley, WeinheimGoogle Scholar
  18. 18.
    Wertheimer MR, Suranyi G, Goring DAI (1972) TAPPI J 55:1707–1708Google Scholar
  19. 19.
    Wertheimer MR, Martinu L, Klemberg-Sapieha JE, Czeremuszkin G (1998) In: Mittal KL, Pizzi A (eds) Adhesion promotion techniques in advanced technologies. Marcel Dekker, New YorkGoogle Scholar
  20. 20.
    Truica-Marasescu F, Wertheimer MR (2005) Macromol Chem Phys 206:744–757CrossRefGoogle Scholar
  21. 21.
    Hong J, Truica-Marasescu F, Martinu L, Wertheimer MR (2002) Plasmas Polym 7:245–260CrossRefGoogle Scholar
  22. 22.
    Nelea V, Vasilets VN, Skurat VE, Truica-Marasescu F, Wertheimer MR (2010) Plasma Process Polym 7:431–444CrossRefGoogle Scholar
  23. 23.
    Zimcik DG, Wertheimer MR, Balmain KG, Tennyson RC (1991) AIAA J Spacecraft Rockets 28:652–657CrossRefGoogle Scholar
  24. 24.
    Hansen RH, Schonhorn H (1966) J Polym Sci Part B: Polym Lett 4:203–209CrossRefGoogle Scholar
  25. 25.
    Truica-Marasescu F, Jedrzejowski P, Wertheimer MR (2004) Plasma Process Polym 1:153–163CrossRefGoogle Scholar
  26. 26.
    Wrobel AM, Lamontagne B, Wertheimer MR (1988) Plasma Chem Plasma Process 8:315–329CrossRefGoogle Scholar
  27. 27.
    Strobel M, Dunatov C, Strobel JM, Lyons CS, Perron SJ, Morgen MC (1989) J Adhes Sci Technol 3:321–335CrossRefGoogle Scholar
  28. 28.
    Strobel JM, Strobel M, Lyons CS, Dunatov C, Perron SJ (1991) J Adhes Sci Technol 5:119–130CrossRefGoogle Scholar
  29. 29.
    Guimond S, Radu I, Czeremuszkin G, Carlsson DJ, Wertheimer MR (2002) Plasmas Polym 7:71–88CrossRefGoogle Scholar
  30. 30.
    Massines F, Gouda G (1998) J Phys D Appl Phys 31:3411–3420CrossRefGoogle Scholar
  31. 31.
    Miralaï SF, Monette E, Bartnikas R, Czeremuszkin G, Latrèche M, Wertheimer MR (2000) Plasmas Polym 5:63–77CrossRefGoogle Scholar
  32. 32.
    Guimond S, Wertheimer MR (2004) J Appl Polym Sci 94:1291–1303CrossRefGoogle Scholar
  33. 33.
    da Silva Sobrinho AS, Latrèche M, Czeremuszkin G, Klemberg-Sapieha JE, Wertheimer MR (1998) J Vac Sci Technol A 16:3190–3198CrossRefGoogle Scholar
  34. 34.
    da Silva Sobrinho AS, Czeremuszkin G, Latrèche M, Wertheimer MR (2000) J Vac Sci Technol A 18:149–157CrossRefGoogle Scholar
  35. 35.
    da Silva Sobrinho SA, Chasle J, Dennler G, Wertheimer MR (1998) Plasmas Polym 3:239–247CrossRefGoogle Scholar
  36. 36.
    da Silva Sobrinho AS, Latrèche M, Czeremuszkin G, Dennler G, Wertheimer MR (1999) Surf Coatings Technol 116–119:1204–1210CrossRefGoogle Scholar
  37. 37.
    Czeremuszkin G, Latrèche M, Wertheimer MR, da Silva Sobrinho AS (2001) Plasmas Polym 6:107–120CrossRefGoogle Scholar
  38. 38.
    da Silva Sobrinho AS, Schühler N, Klemberg-Sapieh JE, Wertheimer MR, Andrews M, Gujrathi SC (1998) J Vac Sci Technol A 16:2021–2030CrossRefGoogle Scholar
  39. 39.
    Dennler G, Houdayer A, Raynaud P, Ségui I, Séguy Y, Wertheimer MR (2003) Plasmas Polym 8:43–57CrossRefGoogle Scholar
  40. 40.
    Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Plasma Process Polym 5:503–533CrossRefGoogle Scholar
  41. 41.
    Siow S, Britcher L, Kumar S, Griesser HJ (2006) Plasma Process Polym 3:392–418CrossRefGoogle Scholar
  42. 42.
    Förch R, Chifen AN, Bousquet A, Khor HL, Jungblut M, Chu L-Q, Zhang Z, Osey-Mensah I, Sinner E-K, Knoll W (2007) Chem Vap Depos 13:280–294CrossRefGoogle Scholar
  43. 43.
    Truica-Marasescu F, Wertheimer MR (2008) Plasma Process Polym 5:44–57CrossRefGoogle Scholar
  44. 44.
    Ruiz JC, St-Georges-Robillard A, Thérésy C, Lerouge S, Wertheimer MR (2010) Plasma Process Polym 7:737–753CrossRefGoogle Scholar
  45. 45.
    Girard-Lauriault P-L, Desjardins P, Lippitz A, Unger WES, Wertheimer MR (2008) Plasma Process Polym 5:631–644CrossRefGoogle Scholar
  46. 46.
    Mwale F, Rampersad S, Ruiz J-C, Girard-Lauriault P-L, Petit A, Antoniou J, Lerouge S, Wertheimer MR (2011) Plasma Medicine 1:115–133CrossRefGoogle Scholar
  47. 47.
    Lerouge S, Major A, Girard-Lauriault PL, Raymond MA, Laplante P, Soulez G, Mwale F, Wertheimer MR, Hébert MJ (2007) Biomaterials 28:1209–1217CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Groupe des Couches Minces (GCM) and Department of Engineering PhysicsÉcole Polytechnique de MontréalMontrealCanada

Personalised recommendations