Plasma Chemistry and Plasma Processing

, Volume 33, Issue 4, pp 807–816 | Cite as

Fabrication and Electrowetting Properties of Poly Si Nanostructure Based Superhydrophobic Platform

  • K. Rajkumar
  • R. T. Rajendrakumar
Original Paper


Poly-silicon based superhydrophobic surface (water contact angle >150°) is being fabricated and its electrowetting properties have been studied. The polysilicon thin film has been deposited over patterned gold electrodes. The polysilicon film is structured to form nanoscale features using Reactive Ion Etching. A thin film of HfO2 high k-dielectric is deposited over the structured polysilicon surface. The surface was chemically modified with Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane (PFOS). Such a surface showed Superhydrophobic behavior with water contact angle of 172° and roll off angle <3°. The electrowetting properties of the fabricated device was studied by applying a DC voltage between the gold electrode and the droplet. The electrowetting commences when the applied voltage was 18 V and the contact angle is reduced to 152°. As the applied voltage was increased there was decrease in contact angles.


Superhydrophobic surface Contact angle Electrowetting Polysilicon and reactive ion etching 



The authors thank for the financial assistance provided by Department of Atomic Energy-Board of Research in Nuclear Science (DAE-BRNS), Government of India. (Sanction No.2012/20/34/6/BRNS). The authors would like to acknowledge the support from Centre of Excellence in Nanoelectronics, Indian Institute of Technology, Bombay, for providing the facility for fabrication and characterization under Indian Nanoelectronics User Program.


  1. 1.
    Shibuichi S, Yamamoto T, Onda T, Tsujii K (1998) Super water- and oil-repellent surfaces resulting from fractal structure. J Colloid Interface Sci 208:287–294. doi: 10.1006/jcis.1998.5813 CrossRefGoogle Scholar
  2. 2.
    Quere David (2008) Wetting and roughness. Annu Rev Mater Res 38:71–99. doi: 10.1146/annurev.matsci.38.060407.132434 CrossRefGoogle Scholar
  3. 3.
    Kang KH (2002) How electrostatic fields change contact angle in electrowetting. Langmuir 18:10318–10322. doi: 10.1021/la0263615 CrossRefGoogle Scholar
  4. 4.
    Verheijen HJJ, Prins MWJ (1999) Reversible electrowetting and trapping of charge: model and experiments. Langmuir 15:6616–6620. doi: 10.1021/la990548n CrossRefGoogle Scholar
  5. 5.
    Welters WJJ, Fokkink LGJ (1998) Fast electrically switchable capillary effects. Langmuir 14:1535–1538. doi: S0743-7463(97)01153-0 CrossRefGoogle Scholar
  6. 6.
    Moon H, Cho S-K, Garrell RL, kim CJ (2002) Low voltage electrowetting-on-dielectric. J Appl Phys 92:4080–4087. doi: 10.1063/1.1504171 CrossRefGoogle Scholar
  7. 7.
    Papadopoulou EL, Pagkozidis A, barberoglou M, Fotakis C, Stratakis E (2010) Electrowetting properties of ZnO and TiO2 nanostructured thin films. J Phys Chem C 114:10249–10253. doi: 10.1021/jp1026114 CrossRefGoogle Scholar
  8. 8.
    Wu J, Xia J, Lei W, Wang B-P (2010) Electrowetting of ZnO nanowires. Appl Phys A 99:93–934. doi: 10.1007/s00339-010-5697-x CrossRefGoogle Scholar
  9. 9.
    Campbell Jos Lasurie, Breedon Michael, Latham Kay, Kalantar- zadeh kouroush (2008) Electrowetting of Superhydrophobic ZnO nanorods. Langmuir 24:5091–5098. doi: 10.1021/la7030413 CrossRefGoogle Scholar
  10. 10.
    Cao L, Hu H–H, Gao D (2007) Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir 23:4310–4314. doi: 10.1021/la063572r CrossRefGoogle Scholar
  11. 11.
    Wang MF, Raghunathan N, Ziaie B (2007) A Nonlithographic top-down electrochemical approach for creating hierarchical (micro-nano) superhydrophobic silicon surfaces. Langmuir 23:2300–2303. doi: 10.1021/la063230l CrossRefGoogle Scholar
  12. 12.
    Sun T, Feng L, Gao X, Jiang L (2005) Bioinspired surfaces with special wettability. Acc Chem Res 38:644–652. doi: 10.1021/ar040224c CrossRefGoogle Scholar
  13. 13.
    Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T (2000) Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16:5754–5760. doi: 10.1021/la991660o CrossRefGoogle Scholar
  14. 14.
    Patankar NA (2004) Transition between superhydrophobic states on rough surfaces. Langmuir 20:7097–7102. doi: 10.1021/la049329e CrossRefGoogle Scholar
  15. 15.
    Gao LC, McCarthy TJ (2006) “Artificial lotus leaf” prepared using a 1945 patent and a commercial textile. Langmuir 22:5998–6000. doi: 10.1021/la061237x CrossRefGoogle Scholar
  16. 16.
    Teshima K, Sugimura H, Inoue Y, Takai O, Takano A (2005) Transparent ultra water-repellent poly (ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating. Appl Surf Sci 244:619–622. doi: 10.1016/j.apsusc.2004.10.143 CrossRefGoogle Scholar
  17. 17.
    Lee JA, McCarthy TJ (2007) Polymer surface modification: topography effects leading to extreme wettability behavior. Macromolecules 40:3965–3969. doi: 10.1021/ma070061i CrossRefGoogle Scholar
  18. 18.
    Oner D, McCarthy TJ (2000) Ultrahydrophobic surfaces. effects of topography length scales on wettability. Langmuir 16:7777–7782. doi: 10.1021/la000598o CrossRefGoogle Scholar
  19. 19.
    Gao LC, McCarthy TJ (2006) The “lotus effect” explained: two reasons why two length scales of topography are important. Langmuir 22:2966–2967. doi: 10.1021/la0532149 CrossRefGoogle Scholar
  20. 20.
    Zhu LB, Xiu YH, Xu JW, Tamirisa PA, Hess DW, Wong CP (2005) Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon. Langmuir 21:11208–11212. doi: 10.1021/la051410+ CrossRefGoogle Scholar
  21. 21.
    Rajendrakumar Ramasamy Thangavelu, Mogensen Klaus Bo, Bøggild Peter (2010) Simple approach to superamphiphobic overhanging silicon nanostructures. J Phys Chem C 114:2936–2940. doi: 10.1021/jp9066422 CrossRefGoogle Scholar
  22. 22.
    Xiu YH, Zhu LB, Hess DW, Wong CP (2006) Biomimetic creation of hierarchical surface structures by combining colloidal self-assembly and au sputter deposition. Langmuir 22:9676–9681. doi: 10.1021/la061698i CrossRefGoogle Scholar
  23. 23.
    Chang KC, Chen YK, Chen H (2007) Preparation of superhydrophobic silica-based films by using polyethylene glycol and tetraethoxysilane. J Appl Polym Sci 105:1503–1510. doi: 10.1002/app.26395 CrossRefGoogle Scholar
  24. 24.
    Qian BT, Shen ZQ (2005) Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir 21:9007–9009. doi: 10.1021/la051308c CrossRefGoogle Scholar
  25. 25.
    Li M, Xu JH, Lu QH (2007) Creating superhydrophobic surfaces with flowery structures on nickel substrates through a wet-chemical-process. J Mater Chem 17:4772–4776. doi: 10.1039/b709665h CrossRefGoogle Scholar
  26. 26.
    Lafuma A, Quere D (2003) Superhydrophobic states. Nat Mater 2:457–460. doi: 10.1038/nmat924 CrossRefGoogle Scholar
  27. 27.
    Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Designing Superoleophobic Surfaces. Science 318:1618–1622. doi: 10.1126/science.1148326 CrossRefGoogle Scholar
  28. 28.
    McHale G, Shirtcliffe NJ, Newton MI (2004) Super-hydrophobic and super-wetting surfaces: analytical potential? Analyst 129:284–287. doi: 10.1039/b400567h CrossRefGoogle Scholar
  29. 29.
    T. Young (1805) T. Philos. Trans. R. Soc 95:65–87Google Scholar
  30. 30.
    Query David (2002) Rough ideas on wetting. Phys A 313:32–46. doi: 10.1016/S0378-4371(02)01033-6 CrossRefGoogle Scholar
  31. 31.
    Shamai R, Andelman D, Berge B, Hayes R (2008) Water, electricity, and between… On electrowetting and its applications. Soft Matter 4:38–45. doi: 10.1039/b714994h CrossRefGoogle Scholar
  32. 32.
    Urso BD, Simpson JT, Kalayanaraman M (2007) Emergence of superhydrophobic behavior on vertically aligned nanocone arrays. App Phys Lett 90:044102-1–044102-3. doi: 10.1063/1.2433039 Google Scholar
  33. 33.
    Jun Wu, Xia jun, Lei Wei, Wang B-P (2010) Electrowetting on ZnO nanowires. Appl Phys A 99:931–934. doi: 10.1007/s00339-010-5697-x CrossRefGoogle Scholar
  34. 34.
    Krupenkin Tom N, Ashley Taylor J, Tobias M, Schneider, Yang Shu (2004) From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir 20:3824–3827. doi: 10.1021/la036093q CrossRefGoogle Scholar
  35. 35.
    Verplanck Nicolas, Galopin Elisabeth, Camart Jean-Christophe, Thomy Vincent (2007) Reversible electrowetting on superhydrophobic silicon nanowires. Nano Lett 7:813–817. doi: 10.1021/nl062606c CrossRefGoogle Scholar
  36. 36.
    H. Wu, J. Cargo, J. Serpiello, J. Mcginn (2002) Characterization of Reactive Ion Etching of Poly Silicon over Gate Oxide for Failure Mode Analysis Deprocessing, IEEE Proceedings of the 9th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Singapore p 91–95Google Scholar
  37. 37.
    Shieh J, Ravipati S, Ko F-H, ostrikov K(K) (2011) Plasma-made silicon nanograss and related nanostructures. J Phys D Appl Phys 44:174010–174015. doi: 10.1088/0022-3727/44/17/174010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Advanced Materials and Devices Laboratory, Department of PhysicsBharathiar UniversityCoimbatoreIndia

Personalised recommendations