Plasma Chemistry and Plasma Processing

, Volume 32, Issue 6, pp 1293–1306 | Cite as

Effect of Radiofrequency Plasma Assisted Grafting of Polypropylene on the Properties of Muga Silk Yarn

  • D. Gogoi
  • J. Chutia
  • A. J. Choudhury
  • A. R. Pal
  • N. N. Dass
  • D. S. Patil
Original Paper


Radiofrequency (RF) Ar/propylene glow discharge is utilized for grafting polypropylene onto muga silk yarn at working pressure of 1.2 × 10−1 mbar and in the of RF power range of 20–80 W. The plasma discharge is diagnosed using self-compensated emissive probe to study the variation of ion energy impinging on the substrates with RF power. From chemical compositional analysis, a possible grafting mechanism between propylene and muga yarn is proposed by considering the charge-transfer initiation through the formation of electron-donor–acceptor (EDA) complex. X-ray photoelectron spectroscopy reveals that at RF power values of 60–80 W, the ion sputtering effect becomes dominant over plasma grafting thereby leading to severe destruction in chemical structure of the polypropylene grafted (PP-grafted) muga yarns. The experimental results show that PP-grafted muga yarns exhibit improved mechanical strength and hydrophobic behavior as compared to the virgin yarn. The properties of the PP-grafted muga yarns are observed to be dependent on atomic concentration, surface morphology as well as the results obtained from plasma discharge characteristics.


Muga silk yarn Surface modification Radiofrequency plasma assisted grafting Polypropylene Plasma diagnostics 



The authors would like to thank the Board of Research in Nuclear Sciences, Department of Atomic Energy; Government of India for financial support.


  1. 1.
    Kalia S, Kaith BS, Kaur I (2009) Polym Eng Sci 49:1253–1272CrossRefGoogle Scholar
  2. 2.
    Li C, Tu C, Huang J, Liu Y, Lee K, Lai J (2006) Surf Coat Technol 201:63–72CrossRefGoogle Scholar
  3. 3.
    Chen G, Zhou M, Zhang Z, Lv G, Massey S, Smith W, Tatoulian M (2011) Plasma Process Polym 8:701–708CrossRefGoogle Scholar
  4. 4.
    Maa YC, Manolache S, Sarmadib M, Denesa FS (2004) Starch-Starke 56:47–57CrossRefGoogle Scholar
  5. 5.
    Cazacu G, Totolin M, Constantinescu G, Ciolacu DJ (2007) Optoelectron Adv Mat 9:970–974Google Scholar
  6. 6.
    Favia P, d’Agostino R, Palumbo F (1997) J Phys IV 7:199–208Google Scholar
  7. 7.
    Turmanova S, Minchev M, Vassilev K, Danev G (2008) J Polym Res 15:309–318CrossRefGoogle Scholar
  8. 8.
    Roth JR (2001) Industrial plasma engineering, vol 1. Institute of Physics Publishing, LondonCrossRefGoogle Scholar
  9. 9.
    Hodak SK, Supasai T, Pasawatyanyong P, Kamlangkla K, Pavarajan V (2008) Appl Surf Sci 254:4744–4749CrossRefGoogle Scholar
  10. 10.
    Ferrero F, Bongiovanni R (2006) Surf Coat Technol 200:4770–4776CrossRefGoogle Scholar
  11. 11.
    Lasorsa CA, Perillo PM, Morando PJ (2010) Surf Coat Technol 204:2813–2816CrossRefGoogle Scholar
  12. 12.
    Gogoi D, Choudhury AJ, Chutia J, Pal AR, Dass NN, Devi D, Patil DS (2011) Appl Surf Sci 258:126–135CrossRefGoogle Scholar
  13. 13.
    Khan MMR, Tsukada M, Gotoh Y, Morikawa H, Freddi G, Shiozaki H (2010) Bioresour Technol 101:8439–8445CrossRefGoogle Scholar
  14. 14.
    Babu MK, Sen K (2007) Res J Text Apparel 11:21–27Google Scholar
  15. 15.
    Talukdar B, Saikia M, Handique PJ, Devi D (2011) Int J Pure Appl Sci Technol 7:81–86Google Scholar
  16. 16.
    Mohanty N, Das HK, Mohanty P, Mohanty E (1995) Macromol Reports 32:1103–1111Google Scholar
  17. 17.
    Das AM, Chowdhury PK, Saikia CN, Rao PG (2009) Ind Eng Chem Res 48:9338–9345CrossRefGoogle Scholar
  18. 18.
    Kakati H, Pal AR, Bailung H, Chutia J (2006) J Appl Phys 100:1–6CrossRefGoogle Scholar
  19. 19.
    Wendt AE (2001) Rev Sci Instrum 72:2926–2931CrossRefGoogle Scholar
  20. 20.
    Kang J, Carlile RN, O’Hanlon JF (1996) Rev Sci Instrum 67:1818–1821CrossRefGoogle Scholar
  21. 21.
    Smith JR, Hershkowitz N, Coakley P (1979) Rev Sci Instrum 50:210–219CrossRefGoogle Scholar
  22. 22.
    Sauer BB, Carney TE (1990) Langmuir 6:1002–1007CrossRefGoogle Scholar
  23. 23.
    Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741–1747CrossRefGoogle Scholar
  24. 24.
    Glew AD, Saha R, Kim JS, Cappelli MA (1999) Surf Coat Technol 114:224–229CrossRefGoogle Scholar
  25. 25.
    Barton D, Short RD, Fraser S, Bradley JW (2003) Chem Commun 3:348–349CrossRefGoogle Scholar
  26. 26.
    Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2008) Introduction to spectroscopy. Brooks Cole Publisher, New YorkGoogle Scholar
  27. 27.
    Dyer JR (1978) Applications of absorption spectroscopy of organic compounds. Prentice-Hall, New JerseyGoogle Scholar
  28. 28.
    Bower DI, Maddams WF (1992) The vibrational spectroscopy of polymers. Cambridge University Press, CambridgeGoogle Scholar
  29. 29.
    Freddi G, Gotoh Y, Mori T, Tsutsui I, Tsukada M (1994) J Appl Polym Sci 52:775–781CrossRefGoogle Scholar
  30. 30.
    Das A, Saikia CN (2000) Bioresour Technol 74:213–216CrossRefGoogle Scholar
  31. 31.
    McDowall DJ, Gupta BS, Stannett VT (1984) Prog Polym Sci 10:1–50CrossRefGoogle Scholar
  32. 32.
    Dass NN (1984) Prog Polym Sci 10:51–85CrossRefGoogle Scholar
  33. 33.
    Özden B, Hacaloglu J, Akovali G (1991) Eur Polym J 27:1405–1410CrossRefGoogle Scholar
  34. 34.
    Shao J, Zheng J, Liu J, Carr CM (2005) J Appl Polym Sci 96:1999–2004CrossRefGoogle Scholar
  35. 35.
    Wei Q, Liu Y, Hou D, Huang FJ (2007) Mater Process Technol 194:89–92CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • D. Gogoi
    • 1
  • J. Chutia
    • 1
  • A. J. Choudhury
    • 1
  • A. R. Pal
    • 1
  • N. N. Dass
    • 1
  • D. S. Patil
    • 2
  1. 1.Physical Sciences DivisionInstitute of Advanced Study in Science and TechnologyGuwahatiIndia
  2. 2.Laser and Plasma Technology DivisionBhabha Atomic Research CenterTrombayIndia

Personalised recommendations