Plasma Chemistry and Plasma Processing

, Volume 32, Issue 6, pp 1259–1274 | Cite as

Functionalization of Cotton by In-Situ Reaction of Styrene in Atmospheric Pressure Plasma Zone

Original Paper


Cotton fabric was treated using styrene/helium glow plasma at the atmospheric pressure. After the treatment, the substrate was found to turn into a highly hydrophobic material showing water drop disappearance time of 60 min and water contact angle of 133°. The treatment was found to be durable even after vigorous washing. The effect of various parameters, such as discharge voltage and frequency, on fragmentation of styrene inside plasma zone was investigated using optical emission spectroscopy and GC–MS. The types of fragments formed in the plasma zone were correlated with the hydrophobicity of the substrate. The chemical nature of surface of the substrate was analyzed using SEM and Raman spectroscopy to elucidate the possible mechanism of plasma modification.


Atmospheric pressure glow plasma Hydrophobicity Mechanism Low frequency plasma 


  1. 1.
    Egitto FD, Matienzo LJ (1994) IBM J. Res Dev 38(4):423Google Scholar
  2. 2.
    Gonzalez E, Barankin MD, Guschl PC, Hicks RF (2008) Langmuir 24(21):12636CrossRefGoogle Scholar
  3. 3.
    Tyczkowski J, Krawczyk I, Woz′niak B, Martin-Martinez JM (2009) Eur Polymer J 45:1826Google Scholar
  4. 4.
    Kim J-H, Liu G, Kim SH (2006) J Mater Chem 16:977CrossRefGoogle Scholar
  5. 5.
    Inagaki N, Cech V, Narushima K, Takechi Y (2007) J Appl Polymer Sci 104:915Google Scholar
  6. 6.
    Chang Y-H, Chang C–C, Chen Y-C, Yang AC, Liu Y-C, Cheng C-K (2009) Plasma Process Polymer 6:45CrossRefGoogle Scholar
  7. 7.
    Kim H, Urban MW (1996) Langmuir 11:2071CrossRefGoogle Scholar
  8. 8.
    Aumsuwan N, Matthew S, Connell M, Urban MW (2009) Biomacromolecules 10:623CrossRefGoogle Scholar
  9. 9.
    Luo HL, Sheng J, Wan YZ (2007) Appl Surf Sci 253:5203CrossRefGoogle Scholar
  10. 10.
    Choudhury AJ, Kakati H, Pal AR, Patil DS, Chutia J (2010) J Phys: Conf Ser 208:012104CrossRefGoogle Scholar
  11. 11.
    Kurosawa S, Kobayashi K, Aizawah H, Yoshimi Y, Yoshimoto M (1999) J Photopolymer Sci Tech l2(l):63Google Scholar
  12. 12.
    Sarmadi AM, Ying TH, Denes F (1993) Textile Res J 63(12):697CrossRefGoogle Scholar
  13. 13.
    Ji YY, Kim SS, Kwon OP, Lee SH (2009) Appl Surface Sci 255:4575CrossRefGoogle Scholar
  14. 14.
    Klapperich CM, Komvopoulos K, Pruitt L (1999) In: Material research society symposium, vol 550, p 331Google Scholar
  15. 15.
    Hochart F, Levalois-Mitjaville J, Roger De Jaeger RD, Gengembre L, Grimblot J (1999) Appl Surface Sci 142:574CrossRefGoogle Scholar
  16. 16.
    Hochart F, Roger De Jaeger RD, Levalois-Gru¨tzmacher J (2003) Surface Coatings Technol 165:201Google Scholar
  17. 17.
    Hodak SK, Supasai T, Paosawatyanyong B, Kamlangkla K, Pavarajarn V (2008) Appl Surf Sci 254:4744CrossRefGoogle Scholar
  18. 18.
    Samanta KK, Jassal M, Agrawal AK (2010) J Phys: Conf Ser 208:012098CrossRefGoogle Scholar
  19. 19.
    Edwards HGM, Farwell DW (1994) Spectrochem Acta 50(4):807–811Google Scholar
  20. 20.
    Kokot S, Anh Tuan N, Rintoul L (1997) Appl Spectroscopy 51(3):387Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.SMITA Research Labs, Department of Textile TechnologyIndian Institute of Technology, Hauz KhasNew DelhiIndia

Personalised recommendations