Plasma Chemistry and Plasma Processing

, Volume 32, Issue 5, pp 991–1023 | Cite as

Decomposition of Acetaldehyde in Atmospheric Pressure Filamentary Nitrogen Plasma

  • O. Koeta
  • N. Blin-Simiand
  • W. Faider
  • S. Pasquiers
  • A. Bary
  • F. Jorand
Original Paper


The removal of 500 ppm acetaldehyde in nitrogen at 1 bar is characterized in a pulse dielectric barrier discharge generating a spatial random distribution of plasma filaments. The identification and the quantification of numerous by-products are performed. At 20 °C, CH3CHO is efficiently dissociated, probably owing to quenching of N2 metastable states. The most abundant by-products are CO, H2, and CH4, in consistency with the three important exit channels for the quenching of the N2(A3Σ u + ) state by CH3CHO proposed by Faider et al. (2011). In order of importance, other products are HCN, C2H6, CH3CN, HNCO, CO2, CH3COCH3, C2H4, C2H5CN, NH3, C2H2, and a group of nitriles and of ketones. An increase of the temperature from 20 °C up to 300 °C induces a strong decrease of the removal characteristic energy, but the by-products types remain unchanged. Probably the reaction of H with CH3CHO plays a role in the removal of the molecule at 300 °C.


Dielectric barrier discharge Acetaldehyde Nitrogen Plasma kinetic 



O. Koeta thanks the FONER (Fond National pour l’Education et la Recherche), Burkina Faso, for financial support.


  1. 1.
    Vercammen K, Berezin A (1997) J Adv Oxid Technol 2:312Google Scholar
  2. 2.
    Rosocha L, Korzekwa R (1999) J Adv Oxid Technol 4:247Google Scholar
  3. 3.
    Hackam R, Akiyama H (2000) IEEE Trans Dielect Elect Ins 7:654CrossRefGoogle Scholar
  4. 4.
    Yan K, van Heesch E, Pemen A, Huijbrechts P (2001) Plasma Chem Plasma Proc 21:107CrossRefGoogle Scholar
  5. 5.
    Mok Y, Nam C, Cho M, Nam I-S (2002) IEEE Trans Plasma Sci 30:408ADSCrossRefGoogle Scholar
  6. 6.
    Pasquiers S (2004) Eur Phys J Appl Phys 28:319ADSCrossRefGoogle Scholar
  7. 7.
    Kim H-H (2004) Plasma Process Polym 1:91CrossRefGoogle Scholar
  8. 8.
    Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Appl Catal B Environ 78:324CrossRefGoogle Scholar
  9. 9.
    Chen H, Lee H, Chen S, Chang M, Yu S, Li S (2009) Environ Sci Technol 43:2216CrossRefGoogle Scholar
  10. 10.
    Kim H-H, Ogata A (2011) Eur Phys J Appl Phys 55:13806ADSCrossRefGoogle Scholar
  11. 11.
    Destaillats H, Maddalena R, Singer B, Hodgson A, McKone T (2008) Atmos Environ 42:1371CrossRefGoogle Scholar
  12. 12.
    Graham L, Belisle S, Baas C-L (2008) Atmos Environ 42:4498CrossRefGoogle Scholar
  13. 13.
    Zlotopol’skii V, Smolenskaya T (1996) High Energy Chem 30:188Google Scholar
  14. 14.
    Kinoshita K, Fujiyama Y, Kim H, Katsura S, Mizuno A (1997) J Electrostat 42:83CrossRefGoogle Scholar
  15. 15.
    Lee H, Chang M (2001) Plasma Chem Plasma Proc 21:329MathSciNetCrossRefGoogle Scholar
  16. 16.
    Koeta O, Blin-Simiand N, Pasquiers S, Bary A, Jorand F, Postel C (2010) 12th international symposium high pressure low temp plasma chemistry, Trenčianske Teplice (Slovakia), Book of contributed papers (Országh J, Papp P, Matejčík Š (eds) Comenius University, Bratislava, Slovakia), p 402Google Scholar
  17. 17.
    Faungnawakij K, Sano N, Yamamoto D, Kanki T, Charinpanitkul T, Tanthapanichakoon W (2004) Chem Eng J 103:115CrossRefGoogle Scholar
  18. 18.
    Klett C, Touchard S, Vega A, Redolfi M, Duten X, Hassouni K (2011) Acta Tech 56:T43Google Scholar
  19. 19.
    Magne L, Pasquiers S, Edon V, Jorand F, Postel C, Amorim J (2005) J Phys D Appl Phys 38:3446ADSCrossRefGoogle Scholar
  20. 20.
    Faider W, Pasquiers S, Blin-Simiand N, Jeanney P, Jorand F, Magne L (2011) 20th international symposium on plasma chemistry, Philadelphia, USA. Contributed papers (A.J. Drexel Plasma Institute, no196
  21. 21.
    Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C, Vacher J-R (2008) Plasma Chem Plasma Proc 28:429CrossRefGoogle Scholar
  22. 22.
    Blin-Simiand N, Pasquiers S, Jorand F, Postel C, Vacher J-R (2009) J Phys D Appl Phys 42:122003ADSCrossRefGoogle Scholar
  23. 23.
    Molspec: Synthetic molecular spectra generator based on the HITRAN database. Laser Components GmbH, Olching, Germany.
  24. 24.
    Roberts J, Veres P, Warneke C, Neuman J, Washenfelder R, Brown S, Baasandorj M, Burkholder J, Burling I, Johnson T, Yokelson R, de Gouw J (2010) Atmos Meas Tech Discuss 3:301ADSCrossRefGoogle Scholar
  25. 25.
    Penetrante B, Hsiao M, Bardsley J, Merritt B, Vogtlin G, Wallman P (1996) Pure Appl Chem 68:1083CrossRefGoogle Scholar
  26. 26.
    Hsiao M, Penetrante B, Merritt B, Vogtlin G, Wallman P (1997) J Adv Oxid Technol 2:306Google Scholar
  27. 27.
    Chang M, Chang C-C (1997) Am Inst Chem Eng (AIChE) J 43:1325CrossRefGoogle Scholar
  28. 28.
    Song Y, Cha M, Kim Y, Kim K, Kim S, Han S, Choi K (2003) J Adv Oxid Technol 6:11Google Scholar
  29. 29.
    Demidyuk V, Whitehead J (2007) Plasma Chem Plasma Proc 27:85CrossRefGoogle Scholar
  30. 30.
    Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C (2008) 11th international symposium on high pressure low temp plasma chemistry, Oleron Island (France), contributed papers vol 2 (Gherardi N (ed) Université Paul Sabatier, Toulouse, France) p 332Google Scholar
  31. 31.
    Jarrige J, Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C (2005) 17th international symposium on plasma chemistry, Toronto Canada), contributed papers (Mostaghimi J, Coyle T, Pershin V, Salimi Jazi H (eds) University of Toronto, Toronto, Canada) p 248Google Scholar
  32. 32.
    Falkenstein Z (1999) J Appl Phys 85:525ADSCrossRefGoogle Scholar
  33. 33.
    Ogata A, Ito D, Mizuno K, Kushiyama S, Gal A, Yamamoto T (2002) Appl Catal A 236:9CrossRefGoogle Scholar
  34. 34.
    Frisch M et al (2004) Gaussian 03, Revision C.02. Gaussian Inc., WallingfordGoogle Scholar
  35. 35.
    C. Klett (2011) PhD thesis, Université Paris 13, FranceGoogle Scholar
  36. 36.
    Herron J (1999) J Phys Chem Ref Data 28:1453ADSCrossRefGoogle Scholar
  37. 37.
    Magne L, Pasquiers S, Gadonna K, Jeanney P, Blin-Simiand N, Jorand F, Postel C (2009) J Phys D Appl Phys 42:165203ADSCrossRefGoogle Scholar
  38. 38.
    Fresnet F, Baravian G, Magne L, Pasquiers S, Postel C, Puech V, Rousseau A (2000) Appl Phys Lett 77:4118ADSCrossRefGoogle Scholar
  39. 39.
    Navaroo-González R, Ramirez S-I (1997) Adv Space Res 19:1121ADSCrossRefGoogle Scholar
  40. 40.
    Moreau N, Pasquiers S, Blin-Simiand N, Magne L, Jorand F, Postel C, Vacher J-R (2010) J Phys D Appl Phys 43:285201CrossRefGoogle Scholar
  41. 41.
    Piper L (1987) J Chem Phys 87:1625ADSCrossRefGoogle Scholar
  42. 42.
    Balla R-J, Casleton K-H, Adams J-S, Pasternack L (1991) J Phys Chem 95:8694CrossRefGoogle Scholar
  43. 43.
    Sims I-R, Queffelec J-L, Travers D, Rowe B-R, Herbert L-B, Karthäuser J, Smith I-WM (1993) Chem Phys Lett 211:461ADSCrossRefGoogle Scholar
  44. 44.
    Gautier T, Carrasco N, Buch A, Szopa C, Sciamma-O’Brien E, Cernogora G (2011) Icarus 213:625ADSCrossRefGoogle Scholar
  45. 45.
    Butterfield M-T, Yu T, Lin M-C (1993) Chem Phys 169:129CrossRefGoogle Scholar
  46. 46.
    Gannon K-L, Glowacki D-R, Blitz M-A, Hughes K-J, Pilling M-J, Seakins P-W (2007) J Phys Chem A 111:6679CrossRefGoogle Scholar
  47. 47.
    Trevitt A-J, Goulay F, Meloni G, Osborn D-L, Taatjes C-A, Leone S-R (2009) Int J Mass Spectrom 280:113CrossRefGoogle Scholar
  48. 48.
    Trevitt A-J, Soorkia S, Savee J-D, Selby T-S, Osborn D-L, Taatjes C-A, Leone S-R (2011) J Phys Chem A 115:13467CrossRefGoogle Scholar
  49. 49.
    Balucani N, Asvany O, Osamura Y, Huang L-C-L, Lee Y-T, Kaiser R-I (2000) Planet Space Sci 48:447ADSCrossRefGoogle Scholar
  50. 50.
    Balucani N (2009) Int J Mol Sci 10:2304CrossRefGoogle Scholar
  51. 51.
    Balucani N, Cartechini L, Alagia M, Casavecchia P, Volpi G-G (2000) J Phys Chem A 104:5655CrossRefGoogle Scholar
  52. 52.
    Kakkar R, Walia V (1992) Int J Quantum Chem 44:363CrossRefGoogle Scholar
  53. 53.
    Magne L, Blin-Simiand N, Gadonna K, Jeanney P, Jorand F, Pasquiers S, Postel C (2009) Eur Phys J Appl Phys 47:22816CrossRefGoogle Scholar
  54. 54.
    Mallard W, Westley F, Herron J, Hampson R, Frizzell D (1998) NIST Chemical kinetics database (version 2Q98)Google Scholar
  55. 55.
    Baulch D, Cox R, Hampson R, Kerr J, Troe J, Watson R (1984) J Phys Chem Ref Data 13:1259ADSCrossRefGoogle Scholar
  56. 56.
    Tsang W, Hampson R (1986) J Phys Chem Ref Data 15:1087ADSCrossRefGoogle Scholar
  57. 57.
    Tsang W, Herron J (1991) J Phys Chem Ref Data 20:609ADSCrossRefGoogle Scholar
  58. 58.
    Baulch D, Cobos C, Cox R, Esser C, Frank P, Just Th, Kerr J, Pilling M, Troe J, Walker R, Warnatz J (1992) J Phys Chem Ref Data 21:411ADSCrossRefGoogle Scholar
  59. 59.
    Tsang W (1991) J Phys Chem Ref Data 21:753ADSCrossRefGoogle Scholar
  60. 60.
    Baulch D, Cobos C, Cox R, Frank P, Hayman G, Just Th, Kerr J, Murrells T, Pilling M, Troe J, Walker R, Warnatz J (1995) J Phys Chem Ref Data 24:1609 Erratum: same authors (1994) J Phys Chem Ref Data 23:847Google Scholar
  61. 61.
    Westley F (1980) N.B.S. Standard Ref Data, US vol 67Google Scholar
  62. 62.
    Tsai C, McFadden D (1990) J Phys Chem 94:3298CrossRefGoogle Scholar
  63. 63.
    Nesbitt F, Marston G, Stief L (1990) J Phys Chem 94:4946CrossRefGoogle Scholar
  64. 64.
    Dautov N, Starik A-M (1997) Kinet Catalyst 38:185Google Scholar
  65. 65.
    Legrand J-C, Diamy A-M, Hrach R, Hrackova V (1997) Contrib Plasma Phys 37:521ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • O. Koeta
    • 1
    • 2
  • N. Blin-Simiand
    • 1
  • W. Faider
    • 1
  • S. Pasquiers
    • 1
  • A. Bary
    • 2
  • F. Jorand
    • 1
  1. 1.Laboratoire de Physique des Gaz et des PlasmasCNRS (UMR8578), Université Paris-SudOrsay cedexFrance
  2. 2.Laboratoire de Chimie Analytique de Radiochimie et d′ElectrochimieUniversité de OuagadougouOuagadougouBurkina Faso

Personalised recommendations