Skip to main content
Log in

Decomposition of Acetaldehyde in Atmospheric Pressure Filamentary Nitrogen Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The removal of 500 ppm acetaldehyde in nitrogen at 1 bar is characterized in a pulse dielectric barrier discharge generating a spatial random distribution of plasma filaments. The identification and the quantification of numerous by-products are performed. At 20 °C, CH3CHO is efficiently dissociated, probably owing to quenching of N2 metastable states. The most abundant by-products are CO, H2, and CH4, in consistency with the three important exit channels for the quenching of the N2(A3Σ +u ) state by CH3CHO proposed by Faider et al. (2011). In order of importance, other products are HCN, C2H6, CH3CN, HNCO, CO2, CH3COCH3, C2H4, C2H5CN, NH3, C2H2, and a group of nitriles and of ketones. An increase of the temperature from 20 °C up to 300 °C induces a strong decrease of the removal characteristic energy, but the by-products types remain unchanged. Probably the reaction of H with CH3CHO plays a role in the removal of the molecule at 300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Vercammen K, Berezin A (1997) J Adv Oxid Technol 2:312

    Google Scholar 

  2. Rosocha L, Korzekwa R (1999) J Adv Oxid Technol 4:247

    Google Scholar 

  3. Hackam R, Akiyama H (2000) IEEE Trans Dielect Elect Ins 7:654

    Article  Google Scholar 

  4. Yan K, van Heesch E, Pemen A, Huijbrechts P (2001) Plasma Chem Plasma Proc 21:107

    Article  Google Scholar 

  5. Mok Y, Nam C, Cho M, Nam I-S (2002) IEEE Trans Plasma Sci 30:408

    Article  ADS  Google Scholar 

  6. Pasquiers S (2004) Eur Phys J Appl Phys 28:319

    Article  ADS  Google Scholar 

  7. Kim H-H (2004) Plasma Process Polym 1:91

    Article  Google Scholar 

  8. Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Appl Catal B Environ 78:324

    Article  Google Scholar 

  9. Chen H, Lee H, Chen S, Chang M, Yu S, Li S (2009) Environ Sci Technol 43:2216

    Article  Google Scholar 

  10. Kim H-H, Ogata A (2011) Eur Phys J Appl Phys 55:13806

    Article  ADS  Google Scholar 

  11. Destaillats H, Maddalena R, Singer B, Hodgson A, McKone T (2008) Atmos Environ 42:1371

    Article  Google Scholar 

  12. Graham L, Belisle S, Baas C-L (2008) Atmos Environ 42:4498

    Article  Google Scholar 

  13. Zlotopol’skii V, Smolenskaya T (1996) High Energy Chem 30:188

    Google Scholar 

  14. Kinoshita K, Fujiyama Y, Kim H, Katsura S, Mizuno A (1997) J Electrostat 42:83

    Article  Google Scholar 

  15. Lee H, Chang M (2001) Plasma Chem Plasma Proc 21:329

    Article  MathSciNet  Google Scholar 

  16. Koeta O, Blin-Simiand N, Pasquiers S, Bary A, Jorand F, Postel C (2010) 12th international symposium high pressure low temp plasma chemistry, Trenčianske Teplice (Slovakia), Book of contributed papers (Országh J, Papp P, Matejčík Š (eds) Comenius University, Bratislava, Slovakia), p 402

  17. Faungnawakij K, Sano N, Yamamoto D, Kanki T, Charinpanitkul T, Tanthapanichakoon W (2004) Chem Eng J 103:115

    Article  Google Scholar 

  18. Klett C, Touchard S, Vega A, Redolfi M, Duten X, Hassouni K (2011) Acta Tech 56:T43

    Google Scholar 

  19. Magne L, Pasquiers S, Edon V, Jorand F, Postel C, Amorim J (2005) J Phys D Appl Phys 38:3446

    Article  ADS  Google Scholar 

  20. Faider W, Pasquiers S, Blin-Simiand N, Jeanney P, Jorand F, Magne L (2011) 20th international symposium on plasma chemistry, Philadelphia, USA. Contributed papers (A.J. Drexel Plasma Institute, http://ispc20.plasmainstitute.org/) no196

  21. Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C, Vacher J-R (2008) Plasma Chem Plasma Proc 28:429

    Article  Google Scholar 

  22. Blin-Simiand N, Pasquiers S, Jorand F, Postel C, Vacher J-R (2009) J Phys D Appl Phys 42:122003

    Article  ADS  Google Scholar 

  23. Molspec: Synthetic molecular spectra generator based on the HITRAN database. Laser Components GmbH, Olching, Germany. http://www.lasercomponents.com

  24. Roberts J, Veres P, Warneke C, Neuman J, Washenfelder R, Brown S, Baasandorj M, Burkholder J, Burling I, Johnson T, Yokelson R, de Gouw J (2010) Atmos Meas Tech Discuss 3:301

    Article  ADS  Google Scholar 

  25. Penetrante B, Hsiao M, Bardsley J, Merritt B, Vogtlin G, Wallman P (1996) Pure Appl Chem 68:1083

    Article  Google Scholar 

  26. Hsiao M, Penetrante B, Merritt B, Vogtlin G, Wallman P (1997) J Adv Oxid Technol 2:306

    Google Scholar 

  27. Chang M, Chang C-C (1997) Am Inst Chem Eng (AIChE) J 43:1325

    Article  Google Scholar 

  28. Song Y, Cha M, Kim Y, Kim K, Kim S, Han S, Choi K (2003) J Adv Oxid Technol 6:11

    Google Scholar 

  29. Demidyuk V, Whitehead J (2007) Plasma Chem Plasma Proc 27:85

    Article  Google Scholar 

  30. Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C (2008) 11th international symposium on high pressure low temp plasma chemistry, Oleron Island (France), contributed papers vol 2 (Gherardi N (ed) Université Paul Sabatier, Toulouse, France) p 332

  31. Jarrige J, Blin-Simiand N, Jorand F, Magne L, Pasquiers S, Postel C (2005) 17th international symposium on plasma chemistry, Toronto Canada), contributed papers (Mostaghimi J, Coyle T, Pershin V, Salimi Jazi H (eds) University of Toronto, Toronto, Canada) p 248

  32. Falkenstein Z (1999) J Appl Phys 85:525

    Article  ADS  Google Scholar 

  33. Ogata A, Ito D, Mizuno K, Kushiyama S, Gal A, Yamamoto T (2002) Appl Catal A 236:9

    Article  Google Scholar 

  34. Frisch M et al (2004) Gaussian 03, Revision C.02. Gaussian Inc., Wallingford

    Google Scholar 

  35. C. Klett (2011) PhD thesis, Université Paris 13, France

  36. Herron J (1999) J Phys Chem Ref Data 28:1453

    Article  ADS  Google Scholar 

  37. Magne L, Pasquiers S, Gadonna K, Jeanney P, Blin-Simiand N, Jorand F, Postel C (2009) J Phys D Appl Phys 42:165203

    Article  ADS  Google Scholar 

  38. Fresnet F, Baravian G, Magne L, Pasquiers S, Postel C, Puech V, Rousseau A (2000) Appl Phys Lett 77:4118

    Article  ADS  Google Scholar 

  39. Navaroo-González R, Ramirez S-I (1997) Adv Space Res 19:1121

    Article  ADS  Google Scholar 

  40. Moreau N, Pasquiers S, Blin-Simiand N, Magne L, Jorand F, Postel C, Vacher J-R (2010) J Phys D Appl Phys 43:285201

    Article  Google Scholar 

  41. Piper L (1987) J Chem Phys 87:1625

    Article  ADS  Google Scholar 

  42. Balla R-J, Casleton K-H, Adams J-S, Pasternack L (1991) J Phys Chem 95:8694

    Article  Google Scholar 

  43. Sims I-R, Queffelec J-L, Travers D, Rowe B-R, Herbert L-B, Karthäuser J, Smith I-WM (1993) Chem Phys Lett 211:461

    Article  ADS  Google Scholar 

  44. Gautier T, Carrasco N, Buch A, Szopa C, Sciamma-O’Brien E, Cernogora G (2011) Icarus 213:625

    Article  ADS  Google Scholar 

  45. Butterfield M-T, Yu T, Lin M-C (1993) Chem Phys 169:129

    Article  Google Scholar 

  46. Gannon K-L, Glowacki D-R, Blitz M-A, Hughes K-J, Pilling M-J, Seakins P-W (2007) J Phys Chem A 111:6679

    Article  Google Scholar 

  47. Trevitt A-J, Goulay F, Meloni G, Osborn D-L, Taatjes C-A, Leone S-R (2009) Int J Mass Spectrom 280:113

    Article  Google Scholar 

  48. Trevitt A-J, Soorkia S, Savee J-D, Selby T-S, Osborn D-L, Taatjes C-A, Leone S-R (2011) J Phys Chem A 115:13467

    Article  Google Scholar 

  49. Balucani N, Asvany O, Osamura Y, Huang L-C-L, Lee Y-T, Kaiser R-I (2000) Planet Space Sci 48:447

    Article  ADS  Google Scholar 

  50. Balucani N (2009) Int J Mol Sci 10:2304

    Article  Google Scholar 

  51. Balucani N, Cartechini L, Alagia M, Casavecchia P, Volpi G-G (2000) J Phys Chem A 104:5655

    Article  Google Scholar 

  52. Kakkar R, Walia V (1992) Int J Quantum Chem 44:363

    Article  Google Scholar 

  53. Magne L, Blin-Simiand N, Gadonna K, Jeanney P, Jorand F, Pasquiers S, Postel C (2009) Eur Phys J Appl Phys 47:22816

    Article  Google Scholar 

  54. Mallard W, Westley F, Herron J, Hampson R, Frizzell D (1998) NIST Chemical kinetics database (version 2Q98)

  55. Baulch D, Cox R, Hampson R, Kerr J, Troe J, Watson R (1984) J Phys Chem Ref Data 13:1259

    Article  ADS  Google Scholar 

  56. Tsang W, Hampson R (1986) J Phys Chem Ref Data 15:1087

    Article  ADS  Google Scholar 

  57. Tsang W, Herron J (1991) J Phys Chem Ref Data 20:609

    Article  ADS  Google Scholar 

  58. Baulch D, Cobos C, Cox R, Esser C, Frank P, Just Th, Kerr J, Pilling M, Troe J, Walker R, Warnatz J (1992) J Phys Chem Ref Data 21:411

    Article  ADS  Google Scholar 

  59. Tsang W (1991) J Phys Chem Ref Data 21:753

    Article  ADS  Google Scholar 

  60. Baulch D, Cobos C, Cox R, Frank P, Hayman G, Just Th, Kerr J, Murrells T, Pilling M, Troe J, Walker R, Warnatz J (1995) J Phys Chem Ref Data 24:1609 Erratum: same authors (1994) J Phys Chem Ref Data 23:847

  61. Westley F (1980) N.B.S. Standard Ref Data, US vol 67

  62. Tsai C, McFadden D (1990) J Phys Chem 94:3298

    Article  Google Scholar 

  63. Nesbitt F, Marston G, Stief L (1990) J Phys Chem 94:4946

    Article  Google Scholar 

  64. Dautov N, Starik A-M (1997) Kinet Catalyst 38:185

    Google Scholar 

  65. Legrand J-C, Diamy A-M, Hrach R, Hrackova V (1997) Contrib Plasma Phys 37:521

    Article  ADS  Google Scholar 

Download references

Acknowledgments

O. Koeta thanks the FONER (Fond National pour l’Education et la Recherche), Burkina Faso, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Blin-Simiand.

Appendix

Appendix

Following reactions are important for the ethynyl radical,

$$ {\text{C}}_{2} {\text{H + H }} \to {\text{ C}}_{ 2} {\text{H}}_{ 2} $$
(80)
$$ {\text{C}}_{2} {\text{H + H}}_{ 2} \, \to {\text{ C}}_{ 2} {\text{H}}_{ 2} {\text{ + H}} $$
(81)
$$ {\text{C}}_{ 2} {\text{H }} + {\text{ CH}}_{ 2} \to {\text{ C}}_{ 2} {\text{H}}_{ 2} + {\text{ CH}} $$
(82)
$$ {\text{C}}_{2} {\text{H + CH}}_{ 4} \, \to {\text{ C}}_{ 2} {\text{H}}_{ 2} {\text{ + CH}}_{ 3} $$
(83)
$$ {\text{C}}_{2} {\text{H + C}}_{ 2} {\text{H }} \to {\text{ C}}_{ 2} {\text{H}}_{ 2} {\text{ + C}}_{ 2} $$
(84)
$$ {\text{C}}_{ 2} {\text{H }} + {\text{ C}}_{ 2} {\text{H}}_{ 6} \to {\text{ C}}_{ 2} {\text{H}}_{ 2} + {\text{ C}}_{ 2} {\text{H}}_{ 5} $$
(85)

Then reactions of the methylidyne radical, coming from (82), and reactions of the ethyl radical, coming from (85), occur,

$$ {\text{CH }} + {\text{ H}}_{ 2} \to {\text{ CH}}_{ 2} + {\text{ H}} $$
(86)
$$ {\text{CH }} + {\text{ CH }} \to {\text{ C}}_{ 2} {\text{H}}_{ 2} + {\text{ H}} $$
(87)
$$ {\text{CH + CH}}_{ 4} \, \to {\text{ C}}_{ 2} {\text{H}}_{ 4} {\text{ + H}} $$
(88)
$$ {\text{CH + C}}_{ 2} {\text{H}}_{ 2} \, \to {\text{ C}}_{ 2} {\text{H}}_{ 3} {\text{ + H}} $$
(89)
$$ {\text{H + C}}_{ 2} {\text{H}}_{ 5} \, \to {\text{ C}}_{ 2} {\text{H}}_{ 4} {\text{ + H}}_{ 2} $$
(90)
$$ {\text{CH}}_{ 2} {\text{ + C}}_{ 2} {\text{H}}_{ 5} \to {\text{ C}}_{ 2} {\text{H}}_{ 4} {\text{ + CH}}_{ 3} $$
(91)
$$ {\text{C}}_{2} {\text{H + C}}_{ 2} {\text{H}}_{ 5} \, \to {\text{ C}}_{ 2} {\text{H}}_{ 2} {\text{ + C}}_{ 2} {\text{H}}_{ 4} $$
(92)
$$ {\text{CH}}_{ 3} {\text{ + C}}_{ 2} {\text{H}}_{ 5} \, \to {\text{ C}}_{ 2} {\text{H}}_{ 4} {\text{ + CH}}_{ 4} $$
(93)
$$ {\text{C}}_{2} {\text{H}}_{ 5} {\text{ + C}}_{ 2} {\text{H}}_{ 5} \to {\text{C}}_{ 2} {\text{H}}_{ 6} {\text{ + C}}_{ 2} {\text{H}}_{ 4} $$
(94)

Note that reaction (86) produces the methylene radical, and reaction (89) the vinyl radical.

Important lost reactions of the vinyl radical are the followings,

$$ {\text{H + C}}_{ 2} {\text{H}}_{ 3} \to {\text{C}}_{ 2} {\text{H}}_{ 2} {\text{ + H}}_{ 2} $$
(95)
$$ {\text{CH}}_{ 2} {\text{ + C}}_{ 2} {\text{H}}_{ 3} \to {\text{C}}_{ 2} {\text{H}}_{ 2} {\text{ + CH}}_{ 3} $$
(96)
$$ {\text{CH}}_{ 3} {\text{ + C}}_{ 2} {\text{H}}_{ 3} \to {\text{ C}}_{ 2} {\text{H}}_{ 2} {\text{ + CH}}_{ 4} $$
(97)
$$ {\text{C}}_{ 2} {\text{H + C}}_{ 2} {\text{H}}_{ 3} \to {\text{ C}}_{ 2} {\text{H}}_{ 2} {\text{ + C}}_{ 2} {\text{H}}_{ 2} $$
(98)
$$ {\text{C}}_{ 2} {\text{H}}_{ 3} {\text{ + C}}_{ 2} {\text{H}}_{ 3} \to {\text{ C}}_{ 2} {\text{H}}_{ 4} {\text{ + C}}_{ 2} {\text{H}}_{ 2} $$
(99)
$$ {\text{C}}_{ 2} {\text{H}}_{ 3} {\text{ + C}}_{ 2} {\text{H}}_{ 5} \to {\text{ C}}_{ 2} {\text{H}}_{ 4} {\text{ + C}}_{ 2} {\text{H}}_{ 4} $$
(100)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koeta, O., Blin-Simiand, N., Faider, W. et al. Decomposition of Acetaldehyde in Atmospheric Pressure Filamentary Nitrogen Plasma. Plasma Chem Plasma Process 32, 991–1023 (2012). https://doi.org/10.1007/s11090-012-9388-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9388-6

Keywords

Navigation