Plasma Chemistry and Plasma Processing

, Volume 32, Issue 3, pp 643–653 | Cite as

Real-Time Monitoring of the Pulsed Laser Ablation of Metals Using Ablation Plasma Spectroscopy

  • Mihai Stafe
  • Constantin Negutu
Original Paper


Here we demonstrate that the emission spectra of the ablation-plasma produced by nanosecond laser pulses on metallic Al targets may be directly connected to the ablation rates and the dimensions of the ablated craters. We show that the variation of the individual spectral-lines intensities with pulse number gives direct, real-time information on the crater depth, whereas the relative intensities of the lines and their widths enable us to study the variation of the electron temperature and density with pulse number and laser fluence in direct connection to the ablation rates. To interpret these results we use a simple model in which the plasma-plume is treated as an ideal gas expanding away from the target with a velocity given by the electron-temperature, and exerting a recoil pressure determined by the electron temperature and density. The model correlates the plume hydrodynamic-length to the crater dimensions and succeeds in predicting the rims heights.


Laser ablation Laser-plasma interactions Ablation plasma spectroscopy 



This paper is supported by the Sectoral Operational Programme Human Resources Development, financed from the European Social Fund and by the Romanian Government under the contract number POSDRU/89/1.5/S/64109.


  1. 1.
    Bauerle D (2000) Laser processing and chemistry. Springer, BerlinGoogle Scholar
  2. 2.
    von Allmen M, Blatter A (1995) Laser-beam interaction with materials. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Bovatsek J, Tamhankar A, Patel RS, Bulgakova NM, Bonse J (2010) Thin Solid Films 518:2897–2904ADSCrossRefGoogle Scholar
  4. 4.
    Griem H (1964) Plasma spectroscopy. McGraw-Hill, New YorkGoogle Scholar
  5. 5.
    Amoruso S, Bruzzese R, Spinelli N, Velotta R (1999) J Phys B At Mol Opt Phys 32:R131–R172ADSCrossRefGoogle Scholar
  6. 6.
    Dadras S, Torkamany MJ, Sabbaghzadeh J (2008) J Phys D Appl Phys 41:225202ADSCrossRefGoogle Scholar
  7. 7.
    Bulgakova NM et al (2011) Appl Surf Sci 257:10876–10882ADSCrossRefGoogle Scholar
  8. 8.
    Bykov NY, Bulgakova NM, Bulgakov AV, Loukianov GA (2004) Appl Phys A 79:1097–1100ADSCrossRefGoogle Scholar
  9. 9.
    Chichkov BN, Momma C, Nolte S, von Alvensleben F, Tunnermann A (1996) Appl Phys A 63:109–115ADSCrossRefGoogle Scholar
  10. 10.
    Buzas A, Egerhazi L, Geretovszky Z (2008) J Phys D Appl Phys 41:085205CrossRefGoogle Scholar
  11. 11.
    Shaikh NM, Hafeez S, Rashid B, Baig MA (2007) Eur Phys J D 44:371–379ADSCrossRefGoogle Scholar
  12. 12.
    Furusawa H, Sakka T, Ogata YH (2004) J Appl Phys 96:975–982ADSCrossRefGoogle Scholar
  13. 13.
    Bogaerts A, Chen Z (2005) Spectrochim Acta B 60:1280–1307ADSCrossRefGoogle Scholar
  14. 14.
    Mahmood S, Rawat RS, Darby MSB, Zakaullah M, Springham SV, Tan TL, Lee P (2010) Phys Plasmas 17:103105ADSCrossRefGoogle Scholar
  15. 15.
    Cirisan M, Jouvard JM, Lavisse L, Hallo L, Oltra R (2011) J Appl Phys 109:103301ADSCrossRefGoogle Scholar
  16. 16.
    Aguilera JA, Aragon C (2002) Appl Surf Sci 197–198:273–280CrossRefGoogle Scholar
  17. 17.
    Saji KJ, Joshy NV, Jayaraj MK (2006) J Appl Phys 100:043302ADSCrossRefGoogle Scholar
  18. 18.
    Amoruso S, Schou J, Lunney JG (2008) Appl Phys A 92:907–911ADSCrossRefGoogle Scholar
  19. 19.
    Doring S, Richter S, Nolte S, Tunnermann A (2010) Opt Express 20395:126596Google Scholar
  20. 20.
    Yamagata Y, Sharma A, Narayan J, Mayo RM, Newman JW, Ebihara K (2000) J Appl Phys 88:6861–6867ADSCrossRefGoogle Scholar
  21. 21.
    Vadillo JM, Laserna JJ (2004) Spectrochim Acta B 59:147–161ADSCrossRefGoogle Scholar
  22. 22.
    St-Onge L, Sabsabi M (2000) Spectrochim Acta B 55:299–308ADSCrossRefGoogle Scholar
  23. 23.
    Konig J, Nolte S, Tunnermann A (2005) Opt Express 13:10597–10607ADSCrossRefGoogle Scholar
  24. 24.
    Sabbaghzadeh J, Dadras S, Torkamany MJ (2007) J Phys D Appl Phys 40:1047–1051ADSCrossRefGoogle Scholar
  25. 25.
    Ancona A, Spagnolo V, Lugara PM, Ferrara M (2001) Appl Opt 40:6019–6025ADSCrossRefGoogle Scholar
  26. 26.
    Marla D, Bhandarkar UV, Suhas SJ (2011) J Appl Phys 109:021101ADSCrossRefGoogle Scholar
  27. 27.
    Stafe M, Negutu C, Popescu IM (2007) Appl Surf Sci 253:6353–6358ADSCrossRefGoogle Scholar
  28. 28.
    Balazs L, Gijbels R, Vertes A (1991) Anal Chem 63:314CrossRefGoogle Scholar
  29. 29.
    Peterlongo A, Miotello A, Kelly R (1994) Phys Rev E 50:4716ADSCrossRefGoogle Scholar
  30. 30.
    Russo RE, Mao X, Mao SS (2002) Anal Chem 74:70A–77ACrossRefGoogle Scholar
  31. 31.
    Vogel A, Venugopalan V (2003) Chem Rev 103:577–644CrossRefGoogle Scholar
  32. 32.
  33. 33.
    Vladoiu I, Stafe M, Negutu C, Popescu IM (2009) Eur Phys J Appl Phys 47:30702CrossRefGoogle Scholar
  34. 34.
    McWhirter RWP (1965) In: Huddlestone RH, Leonard SL (eds) Plasma diagnostic techniques, chap 5. Academic Press, New YorkGoogle Scholar
  35. 35.
    Beilis II (2008) Rad Eff Defects Solids 163:317–324ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity ‘Politehnica’ of BucharestBucharestRomania

Personalised recommendations