Advertisement

Plasma Chemistry and Plasma Processing

, Volume 32, Issue 3, pp 565–582 | Cite as

Catalytic Conversion of Simulated Biogas Mixtures to Synthesis Gas in a Fluidized Bed Reactor Supported by a DBD

  • Thorsten Kroker
  • Torsten Kolb
  • Andreas Schenk
  • Krzysztof Krawczyk
  • Michal Młotek
  • Karl-Heinz Gericke
Original Paper

Abstract

The catalytic conversion of methane and carbon dioxide was studied in a fluidized bed reactor supported by a 13.56 Hz driven coaxial DBD-reactor. Palladium or cupper catalyst which are covered on Al2O3 particles were used. The goal was to test whether biogas can be used for the production of synthesis gas. The influences of discharge power, catalysts and temperature of the catalyst bed on the product yield were studied. The starting material and product stream was analyzed by quadrupole mass spectrometry and infrared spectroscopy. H2/CO ratios can be adjusted in a range between 0.65 (without a catalyst) and 1.75 (using a copper catalyst). The process is highly selective for hydrogen production (up to 83%, using a Palladium catalyst). A copper catalyst increases the H2/CO ratio can from 1.04 to 1.16 and the palladium catalyst from 1.11 to 1.43 by heating the catalyst to a temperature of 250°C.

Keywords

Biogas Cold plasma Fluidized bed reactor Synthesis gas Online monitoring 

Notes

Acknowledgments

This project is part of the framework of the European Research Area (ERA) Chemistry call. The work was financially supported by the Deutsche Forschungs-Gesellschaft (DFG). Support by the Braunschweig International Graduate School of Metrology (IGSM) is gratefully acknowledged.

References

  1. 1.
    Metzger JO (2006) Produktion von flüssigen Kohlenwasserstoffen aus Biomasse. Angew Chem 118:710–713CrossRefGoogle Scholar
  2. 2.
    Edwards JH, Maitra AM (1995) The chemistry of methane reforming with carbon dioxide and its current and potential applications. Fuel Process Technol 42:269–289CrossRefGoogle Scholar
  3. 3.
    Bharadwaj SS, Schmidt LD (1995) Catalytic partial oxidation of natural gas to syngas. Fuel Process Technol 42:109–127CrossRefGoogle Scholar
  4. 4.
    Tomishige K (2004) Syngas production from methane reforming with CO2/H2O and O2 over NiO–MgO solid solution catalyst in fluidized bed reactors. Catal Today 89:405–418CrossRefGoogle Scholar
  5. 5.
    Zhang K, Kogelschatz U, Eliasson B (2001) Conversion of greenhouse gases to synthesis gas and higher hydrocarbons. Energy Fuels 15:395–402CrossRefGoogle Scholar
  6. 6.
    Zhou LM, Xue B, Kogelschatz U, Eliasson B (1998) Nonequilibrium plasma reforming of greenhouse gases to synthesis gas. Energy Fuels 12:1191–1199CrossRefGoogle Scholar
  7. 7.
    Li M, Tian Y, Xu G (2007) Characteristics of carbon dioxide reforming of methane via alternating current (AC) corona plasma reactions. Energy Fuels 21:2335–2339CrossRefGoogle Scholar
  8. 8.
    Longa H, Shanga S, Taob X, Yinb Y, Dai X (2008) CO2 reforming of CH4 by combination of cold plasma jet and Ni/g-Al2O3 catalyst. Int J Hydrogen Energy 33:5510–5515CrossRefGoogle Scholar
  9. 9.
    Tao X, Qi F, Yin Y, Dai X (2008) CO2 reforming of CH4 by combination of thermal plasma and catalyst. Int J Hydrogen Energy 33:1262–1265CrossRefGoogle Scholar
  10. 10.
    Zhang K, Eliasson B, Kogelschatz U (2002) Direct conversion of greenhouse gases to synthesis gas and C4 hydrocarbons over zeolite HY promoted by a dielectric-barrier discharge. Ind Eng Chem Res 41:1462–1468CrossRefGoogle Scholar
  11. 11.
    Eliasson B, Liu C, Kogelschatz U (2000) Direct conversion of methane and carbon dioxide to higher hydrocarbons using catalytic dielectric-barrier discharges with zeolites. Ind Eng Chem Res 39:1221–1227CrossRefGoogle Scholar
  12. 12.
    Guoa F, Chua W, Xub J, Zhonga L (2008) Glow discharge plasma-assisted preparation of nickel-based catalyst for carbon dioxide reforming of methane. Chin J Chem Phys 21:481–486CrossRefGoogle Scholar
  13. 13.
    Bo Z, Yan J, Li X, Chi Y, Cen K (2008) Plasma assisted dry methane reforming using gliding arc gas discharge: effect of feed gases proportion. Int J Hydrogen Energy 33:5545–5553CrossRefGoogle Scholar
  14. 14.
    Kim SC, Chun YN (2008) Production of hydrogen by partial oxidation with thermal plasma. Renewable Energy 33:1564–1569CrossRefGoogle Scholar
  15. 15.
    Rueangjitt N, Sreethawong T, Chavadej S (2008) Reforming of CO2-containing natural gas using an AC gliding arc system: effects of operational parameters and oxygen addition in feed. Plasma Chem Plasma Process 28:49–67CrossRefGoogle Scholar
  16. 16.
    Ghorbanzadeh AM, Modarresi H (2007) Carbon dioxide reforming of methane by pulsed glow discharge at atmospheric pressure: the effect of pulse compression. J Appl Phys 101:123303ADSCrossRefGoogle Scholar
  17. 17.
    Li D, Li X, Bai M, Tao X, Shang S, Dai X, Yin Y (2009) CO2 reforming of CH4 by atmospheric pressure glow discharge plasma: a high conversion ability. Int J Hydrogen Energy 34:308–313CrossRefGoogle Scholar
  18. 18.
    Tomishige K, Asadullah M, Kunimori K (2004) Syngas production by biomass gasification using Rh/CeO2/SiO2 catalysts and fluidized bed reactor. Catal Today 89:389–403CrossRefGoogle Scholar
  19. 19.
    Chun NY, Song HW, Kim SC, Lim MS (2008) Hydrogen-rich gas production from biogas reforming using plasmatron. Energy Fuels 22:123–127CrossRefGoogle Scholar
  20. 20.
    Goujard V, Tatibouet JM, Batiot-Dupeyrat C (2009) Use of a non-thermal plasma for the production of synthesis gas from biogas. Appl Catal A 353:228–235CrossRefGoogle Scholar
  21. 21.
    Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380CrossRefGoogle Scholar
  22. 22.
    Khoiyangbam RS, Kumar S, Jain MC, Gupta N, Kumar A, Kumar V (2004) Methane emission from fixed dome biogas plants in hilly and plain regions of northern India. Bioresour Technol 95:35–39CrossRefGoogle Scholar
  23. 23.
    Kroker T, Kolb T, Krawczyk K, Młotek M, Schenk A, Schmidt-Szałowski K, Gericke KH (2009) Catalytic conversion of biogas in a fluidised bed reactor supported by a DBD. Adv Appl Plasma Sci 7:187–190Google Scholar
  24. 24.
    Sentek J, Krawczyk K, Młotek M, Kalczewska M, Kroker T, Kolb T, Schenk A, Gericke KH, Schmidt-Szałowski K (2010) Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges. Appl Catal B 94:19–26CrossRefGoogle Scholar
  25. 25.
    Młotek M, Sentek J, Krawczyk K, Schmidt-Szałowski K (2009) The hybrid plasma–catalytic process for non-oxidative methane coupling to ethylene and ethane. Appl Catal A 366:232–241CrossRefGoogle Scholar
  26. 26.
    Tsang W, Hampson RF (1986) Chemical kinetic data base for combustion chemistry, part I, methane and related components. J Phys Chem Ref Data 15:1087–1222ADSCrossRefGoogle Scholar
  27. 27.
    Darwent BB (1970) Bond dissociation energies in simple molecules. NBSDS-NBS 31Google Scholar
  28. 28.
    Pozzo M, Alfe D (2009) Hydrogen dissociation and diffusion on transition metal ([Ti, Zr, V, Fe, Ru, Co., Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces. Int J Hydrogen Energy 34:1922–1930ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Thorsten Kroker
    • 1
  • Torsten Kolb
    • 1
  • Andreas Schenk
    • 1
  • Krzysztof Krawczyk
    • 2
  • Michal Młotek
    • 2
  • Karl-Heinz Gericke
    • 1
  1. 1.Institute of Physical and Theoretical ChemistryBraunschweigGermany
  2. 2.Faculty of ChemistryWarsaw University of TechnologyWarszawaPoland

Personalised recommendations