Skip to main content
Log in

Dissociative Excitation of C2H2 in the Electron Cyclotron Resonance Plasma of Ar: Production of CH(A2Δ) Radicals and Formation of Hydrogenated Amorphous Carbon Films

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The dissociative excitation reaction of C2H2 with the electron-cyclotron resonance plasma of Ar was investigated based on the electrostatic-probe measurements and on the optical emission spectroscopy of the CH(A2Δ–X2Π) transition. The density, n e, and the temperature, T e, of free electrons were controlled by adding H2O molecules externally into the reaction region, and the dependence of the CH(A2Δ–X2Π) emission intensity on the addition of H2O was observed to compare with the evaluated dependencies based on n e and T e. The mechanism of production of CH(A2Δ) was found, predominantly, to be the electron impact with the contribution of 10–20% of the electron-impact dissociation of C2H radicals; the contribution of the ion–electron recombination was negligible. Hydrogenated amorphous carbon films were fabricated using the same reaction system. The atomic compositions, Raman spectra, and the hardness of films were discussed in terms of the variations of n e and T e upon the addition of H2O molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ochkin VN (2009) Spectroscopy of low temperature plasma. Wiley, Weinheim

    Book  Google Scholar 

  2. Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  3. King DL, Setser DW (1976) Ann Rev Phys Chem 27:407–442

    Article  ADS  Google Scholar 

  4. Tsji M, Kobarai K, Kouno H, Obase H, Nishimura Y (1991) J Chem Phys 94:1127–1133

    Article  ADS  Google Scholar 

  5. Wagner J, Wild Ch, Pohl F, Koidl P (1986) Appl Phys Lett 48:106–108

    Article  ADS  Google Scholar 

  6. Ito H, Hayashi H, Kogure Y (2007) Chem Phys 340:197–202

    Article  ADS  Google Scholar 

  7. Ito H, Hayashi H, Hirata M, Watanabe Y (2008) J Phys D Appl Phys 41:085201

    Article  ADS  Google Scholar 

  8. Ito H, Kawamura Y (2008) J Non Cryst Solids 354:3267–3272

    Article  ADS  Google Scholar 

  9. Wada A, Araki H, Ito H (2010) J Phys D Appl Phys 43:045021

    Article  Google Scholar 

  10. Albritton DL (1978) At Nucl Data Tables 22:1–89

    Article  ADS  Google Scholar 

  11. Shul RJ, Upschlte BL, Passareila R, Keesee RG, Castleman AW Jr (1987) J Phys Chem 91:2556–2562

    Article  Google Scholar 

  12. Robertson J (2002) Mat Sci Eng R37:129–281

    Google Scholar 

  13. Doyle JR (1997) J Appl Phys 82:4763–4771

    Article  ADS  Google Scholar 

  14. Ehrhardt H, Kleber R, Krüger A, Dworschak W, Jung K, Mühling I, Engelke F, Metz H (1992) Diam Relat Mat 1:316–320

    Article  Google Scholar 

  15. Donnelly K, Dowling DP, O’Brien TP, O’Leary A, Kelly TC (1996) Diam Relat Mat 5:445–447

    Article  Google Scholar 

  16. Kumar S, Rauthan CMS, Srivasta KMK, Dixit PN, Bhattacharyya R (2001) Appl Surf Sci 182:326–332

    Article  ADS  Google Scholar 

  17. Niederberger L, Holleck H, Leiste H, Stüber M, Ulrich S, Baumann H (2003) Surf Coat Tech 174–175:708–712

    Article  Google Scholar 

  18. Umeno M, Adhikary S (2005) Diam Relat Mat 14:1973–1979

    Article  Google Scholar 

  19. Kim BK, Grotjohn TA (2000) Diam Relat Mat 9:654–657

    Article  Google Scholar 

  20. Piazza F, Arnal Y, Grambole D, Herrmann F, Kildemo M, Lacoste A, Relihan G, Golanski A (2001) Thin Solid Films 383:196–199

    Article  ADS  Google Scholar 

  21. Li KY, Zhou ZF, Bello I, Lee CS, Lee ST (2005) Wear 258:1577–2588

    Article  Google Scholar 

  22. Benedikt J, Wisse M, Woen RV, Engeln R, Sanden MCM (2003) J Appl Phys 94:6932–6938

    Article  ADS  Google Scholar 

  23. Ito H, Kogure Y, Ito N, Oki S, Saitoh H (2008) Surf Coat Tech 202:5370–5373

    Article  Google Scholar 

  24. Mott NF, Massey HS (1965) Theory of atomic collisions, 3rd edn. Oxford

  25. Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126–1130

    Article  ADS  Google Scholar 

  26. Yang WJ, Sekino T, Shim KB, Niihara K, Auh KH (2005) Surf Coat Tech 194:128

    Article  Google Scholar 

  27. Tokeshi M, Nakashima K, Ogawa T (1996) Chem Phys 203:257–266

    Article  Google Scholar 

  28. Möhlmann GR, De Heer FJ (1977) Chem Phys 19:233–240

    Article  Google Scholar 

  29. Tsuji M, Kouno H, Matsumura K, Funatsu T, Nishimura Y (1993) J Chem Phys 98:2011–2022

    Article  ADS  Google Scholar 

  30. Kim YK, Ali MA, Rudd ME (1997) J Res NIST 102:693–696

    Google Scholar 

  31. Benndorf C, Joeris P, Kröger R (1994) Pure Appl Chem 66:1195–1206

    Article  Google Scholar 

  32. Mul PM, McGowan JW (1980) Astrophys J 237:749–751

    Article  ADS  Google Scholar 

  33. Tsuji M, Ogawa T, Nishimura Y, Ishibashi N (1976) Bull Chem Soc Jpn 49:2913–2919

    Article  Google Scholar 

  34. Broks JN, Wang Z, Ruzic DN, Alman DA (1999) Hydrocarbon rate coefficients for proton and electron impact ionization, dissociation, and recombination in a hydrogen plasma. Argonne National Laboratory

  35. Hinze J, Lee GC, Liu B (1975) Astrophys J 196:621

    Article  ADS  Google Scholar 

  36. Kim JK, Anicichi VG, Hundress WT Jr (1977) J Phys Chem 81:1798–1805

    Article  Google Scholar 

  37. AnicichVG, Huntress Jr WT, McEwan MJ (1986) J Phys Chem 90:2446–2450

    Google Scholar 

  38. Carl SA (2005) Phys Chem Chem Phys 7:4051–4053

    Article  Google Scholar 

  39. Tamura M, Berg PA, Harrington JE, Luque J, Jeffries JB, Smith GP, Crosley DR (1998) Combust Flame 114:502–514

    Article  Google Scholar 

  40. Berman MR, Fleming JW, Herve AB, Lin MC (1982) Chem Phys 73:27–33

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank to Professor Kozo Kuchitsu for his interest in the present study and fruitful advice and discussion. They thank also to Professor Hiroshi Matsubara for his kind provision to use the XPS apparatus. This work was supported by Grant-in-Aid for Scientific Research, from the Ministry of Education, Culture, Sports, Science, and Technology, under Contract No. 22560020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, H., Koshimura, K., Onitsuka, S. et al. Dissociative Excitation of C2H2 in the Electron Cyclotron Resonance Plasma of Ar: Production of CH(A2Δ) Radicals and Formation of Hydrogenated Amorphous Carbon Films. Plasma Chem Plasma Process 32, 231–248 (2012). https://doi.org/10.1007/s11090-012-9355-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9355-2

Keywords

Navigation