Plasma Chemistry and Plasma Processing

, Volume 32, Issue 2, pp 231–248 | Cite as

Dissociative Excitation of C2H2 in the Electron Cyclotron Resonance Plasma of Ar: Production of CH(A2Δ) Radicals and Formation of Hydrogenated Amorphous Carbon Films

  • Haruhiko Ito
  • Katsuaki Koshimura
  • Saori Onitsuka
  • Kohtaro Okada
  • Tsuneo Suzuki
  • Hiroki Akasaka
  • Hidetoshi Saitoh
Original Paper


The dissociative excitation reaction of C2H2 with the electron-cyclotron resonance plasma of Ar was investigated based on the electrostatic-probe measurements and on the optical emission spectroscopy of the CH(A2Δ–X2Π) transition. The density, n e, and the temperature, T e, of free electrons were controlled by adding H2O molecules externally into the reaction region, and the dependence of the CH(A2Δ–X2Π) emission intensity on the addition of H2O was observed to compare with the evaluated dependencies based on n e and T e. The mechanism of production of CH(A2Δ) was found, predominantly, to be the electron impact with the contribution of 10–20% of the electron-impact dissociation of C2H radicals; the contribution of the ion–electron recombination was negligible. Hydrogenated amorphous carbon films were fabricated using the same reaction system. The atomic compositions, Raman spectra, and the hardness of films were discussed in terms of the variations of n e and T e upon the addition of H2O molecules.


ECR plasma Optical emission spectrum C2H2 CH(A–X) transition Hydrogenated amorphous carbon 



The authors thank to Professor Kozo Kuchitsu for his interest in the present study and fruitful advice and discussion. They thank also to Professor Hiroshi Matsubara for his kind provision to use the XPS apparatus. This work was supported by Grant-in-Aid for Scientific Research, from the Ministry of Education, Culture, Sports, Science, and Technology, under Contract No. 22560020.


  1. 1.
    Ochkin VN (2009) Spectroscopy of low temperature plasma. Wiley, WeinheimCrossRefGoogle Scholar
  2. 2.
    Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  3. 3.
    King DL, Setser DW (1976) Ann Rev Phys Chem 27:407–442ADSCrossRefGoogle Scholar
  4. 4.
    Tsji M, Kobarai K, Kouno H, Obase H, Nishimura Y (1991) J Chem Phys 94:1127–1133ADSCrossRefGoogle Scholar
  5. 5.
    Wagner J, Wild Ch, Pohl F, Koidl P (1986) Appl Phys Lett 48:106–108ADSCrossRefGoogle Scholar
  6. 6.
    Ito H, Hayashi H, Kogure Y (2007) Chem Phys 340:197–202ADSCrossRefGoogle Scholar
  7. 7.
    Ito H, Hayashi H, Hirata M, Watanabe Y (2008) J Phys D Appl Phys 41:085201ADSCrossRefGoogle Scholar
  8. 8.
    Ito H, Kawamura Y (2008) J Non Cryst Solids 354:3267–3272ADSCrossRefGoogle Scholar
  9. 9.
    Wada A, Araki H, Ito H (2010) J Phys D Appl Phys 43:045021CrossRefGoogle Scholar
  10. 10.
    Albritton DL (1978) At Nucl Data Tables 22:1–89ADSCrossRefGoogle Scholar
  11. 11.
    Shul RJ, Upschlte BL, Passareila R, Keesee RG, Castleman AW Jr (1987) J Phys Chem 91:2556–2562CrossRefGoogle Scholar
  12. 12.
    Robertson J (2002) Mat Sci Eng R37:129–281Google Scholar
  13. 13.
    Doyle JR (1997) J Appl Phys 82:4763–4771ADSCrossRefGoogle Scholar
  14. 14.
    Ehrhardt H, Kleber R, Krüger A, Dworschak W, Jung K, Mühling I, Engelke F, Metz H (1992) Diam Relat Mat 1:316–320CrossRefGoogle Scholar
  15. 15.
    Donnelly K, Dowling DP, O’Brien TP, O’Leary A, Kelly TC (1996) Diam Relat Mat 5:445–447CrossRefGoogle Scholar
  16. 16.
    Kumar S, Rauthan CMS, Srivasta KMK, Dixit PN, Bhattacharyya R (2001) Appl Surf Sci 182:326–332ADSCrossRefGoogle Scholar
  17. 17.
    Niederberger L, Holleck H, Leiste H, Stüber M, Ulrich S, Baumann H (2003) Surf Coat Tech 174–175:708–712CrossRefGoogle Scholar
  18. 18.
    Umeno M, Adhikary S (2005) Diam Relat Mat 14:1973–1979CrossRefGoogle Scholar
  19. 19.
    Kim BK, Grotjohn TA (2000) Diam Relat Mat 9:654–657CrossRefGoogle Scholar
  20. 20.
    Piazza F, Arnal Y, Grambole D, Herrmann F, Kildemo M, Lacoste A, Relihan G, Golanski A (2001) Thin Solid Films 383:196–199ADSCrossRefGoogle Scholar
  21. 21.
    Li KY, Zhou ZF, Bello I, Lee CS, Lee ST (2005) Wear 258:1577–2588CrossRefGoogle Scholar
  22. 22.
    Benedikt J, Wisse M, Woen RV, Engeln R, Sanden MCM (2003) J Appl Phys 94:6932–6938ADSCrossRefGoogle Scholar
  23. 23.
    Ito H, Kogure Y, Ito N, Oki S, Saitoh H (2008) Surf Coat Tech 202:5370–5373CrossRefGoogle Scholar
  24. 24.
    Mott NF, Massey HS (1965) Theory of atomic collisions, 3rd edn. OxfordGoogle Scholar
  25. 25.
    Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126–1130ADSCrossRefGoogle Scholar
  26. 26.
    Yang WJ, Sekino T, Shim KB, Niihara K, Auh KH (2005) Surf Coat Tech 194:128CrossRefGoogle Scholar
  27. 27.
    Tokeshi M, Nakashima K, Ogawa T (1996) Chem Phys 203:257–266CrossRefGoogle Scholar
  28. 28.
    Möhlmann GR, De Heer FJ (1977) Chem Phys 19:233–240CrossRefGoogle Scholar
  29. 29.
    Tsuji M, Kouno H, Matsumura K, Funatsu T, Nishimura Y (1993) J Chem Phys 98:2011–2022ADSCrossRefGoogle Scholar
  30. 30.
    Kim YK, Ali MA, Rudd ME (1997) J Res NIST 102:693–696Google Scholar
  31. 31.
    Benndorf C, Joeris P, Kröger R (1994) Pure Appl Chem 66:1195–1206CrossRefGoogle Scholar
  32. 32.
    Mul PM, McGowan JW (1980) Astrophys J 237:749–751ADSCrossRefGoogle Scholar
  33. 33.
    Tsuji M, Ogawa T, Nishimura Y, Ishibashi N (1976) Bull Chem Soc Jpn 49:2913–2919CrossRefGoogle Scholar
  34. 34.
    Broks JN, Wang Z, Ruzic DN, Alman DA (1999) Hydrocarbon rate coefficients for proton and electron impact ionization, dissociation, and recombination in a hydrogen plasma. Argonne National LaboratoryGoogle Scholar
  35. 35.
    Hinze J, Lee GC, Liu B (1975) Astrophys J 196:621ADSCrossRefGoogle Scholar
  36. 36.
    Kim JK, Anicichi VG, Hundress WT Jr (1977) J Phys Chem 81:1798–1805CrossRefGoogle Scholar
  37. 37.
    AnicichVG, Huntress Jr WT, McEwan MJ (1986) J Phys Chem 90:2446–2450Google Scholar
  38. 38.
    Carl SA (2005) Phys Chem Chem Phys 7:4051–4053CrossRefGoogle Scholar
  39. 39.
    Tamura M, Berg PA, Harrington JE, Luque J, Jeffries JB, Smith GP, Crosley DR (1998) Combust Flame 114:502–514CrossRefGoogle Scholar
  40. 40.
    Berman MR, Fleming JW, Herve AB, Lin MC (1982) Chem Phys 73:27–33CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Haruhiko Ito
    • 1
  • Katsuaki Koshimura
    • 1
  • Saori Onitsuka
    • 1
  • Kohtaro Okada
    • 1
  • Tsuneo Suzuki
    • 2
  • Hiroki Akasaka
    • 1
  • Hidetoshi Saitoh
    • 1
  1. 1.Department of ChemistryNagaoka University of TechnologyNagaokaJapan
  2. 2.Extreme Energy-Density Research InstituteNagaoka University of TechnologyNagaokaJapan

Personalised recommendations