Plasma Chemistry and Plasma Processing

, Volume 31, Issue 3, pp 465–475 | Cite as

Microstructural Characterization and Mechanical Property of Iridium Coating Produced by Double Glow Plasma

  • Wangping Wu
  • Xin Lin
  • Zhaofeng Chen
  • Zhou Chen
  • Xiangna Cong
  • Tengzhou Xu
  • Jinlian Qiu
Original paper


Ir is the most interesting as an effective oxygen diffusion barrier for super high-temperature structural materials. In this study, an Ir coating, approximately 7 μm thick, was deposited onto Mo substrate by double glow plasma at substrate temperature of about 1,120 K in an argon atmosphere. The crystal orientation, morphology and mechanical property of the Ir coating were investigated by XRD, SEM, AFM, TEM, nanoindentation and scratch test. The results indicated that the (220)-oriented Ir coating was composed of the columnar grains. The surface roughness of the Ir coating was higher than that of the substrate. The hardness and the elastic modulus of the Ir coating were about 9.5 and 340 GPa, respectively. The coating had a high hardness due to the sub-micrometer size grains. The coating had good scratch resistance due to the strong adhesion of the coating to the substrate.


Coating Morphology Hardness Plasma discharge 



This work has been supported by the National Natural Science Foundation of China (50872055/E020703) and the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP200907). The authors gratefully acknowledge Dr. Jun Huang for help in Nanoindentation experiment and for useful discussions. The authors would also like to thank Prof. Fengming Pan and Mr. Yan Zhu at College of Science for their help in AFM characterization.


  1. 1.
    Hagen J, Burmeister F, Fromm A, Manns P, Kleer G (2009) Plasma Process Polym 6:678–683CrossRefGoogle Scholar
  2. 2.
    Mumtaz K, Echigoya J, Hirai T, Shindo Y (1993) J Mater Sci Lett 12:1411–1412CrossRefGoogle Scholar
  3. 3.
    Yang WB, Zhang LT, Hua YF, Cheng LF (2009) Int J Refract Met Hard Mater 27:33–36CrossRefGoogle Scholar
  4. 4.
    Cai HZ, Chen L, Wei Y, Hu CY (2010) Rare Metal Mater Eng 39:209–212CrossRefGoogle Scholar
  5. 5.
    Mumtaz K, Echigoya J, Hirai T, Shindo Y (1993) Mater Sci Eng A 167:187–195CrossRefGoogle Scholar
  6. 6.
    Vargas Garcia JR, Goto T (2003) Mater Trans 44:1717–1728CrossRefGoogle Scholar
  7. 7.
    El Khakani MA, Chaker M, Le Drogoff B (1998) J Vac Sci Technol A 16:885–888ADSCrossRefGoogle Scholar
  8. 8.
    Gong YS, Wang CB, Shen Q, Zhang LM (2008) Vacuum 82:594–598CrossRefGoogle Scholar
  9. 9.
    Snell L, Nelson A, Molian P (2001) Carbon 39:991–999CrossRefGoogle Scholar
  10. 10.
    Etenko A, McKechnie T, Shchetkovskiy A, Smirnov A (2007) ECS Trans 3:151–167CrossRefGoogle Scholar
  11. 11.
    Čukman D, Vuković M, Milun M (1995) J Electroanal Chem 389(1–2):209–213Google Scholar
  12. 12.
    Wang LB, Chen ZF, Zhang PZ, Wu WP, Zhang Y (2009) J Coat Technol Res 6:517–522CrossRefGoogle Scholar
  13. 13.
    Ultramet-Advanced Materials Solutions. Propulsion system components, liquid rocket engines.
  14. 14.
    Ohriner EK (2008) Platinum Metals Rev 52:186–197CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Chen ZF, Wang LB, Wu WP, Fang D (2009) J Coat Technol Res 6:237–241CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Chen ZF, Wang LB, Yan B, Li C, Fang D (2009) Fusion Eng Design 8:415–418Google Scholar
  17. 17.
    Kohli S, Rithner CD, Dorhout PK (2002) J Appl Phys 91:1149–1154ADSCrossRefGoogle Scholar
  18. 18.
    Wang LB, Chen ZF, Zhang Y, Wu WP (2009) Int J Refract Met Hard Mater 27:590–594CrossRefGoogle Scholar
  19. 19.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564–1583ADSCrossRefGoogle Scholar
  20. 20.
    Goswami J, Wang CG, Majhi P, Shin YW, Dey SK (2001) J Mater Res 16:2192–2195ADSCrossRefGoogle Scholar
  21. 21.
    Wessling B, Mokwa W, Schnakenberg U (2008) J Electrochem Soc 155:61–65CrossRefGoogle Scholar
  22. 22.
    Tjong SC, Chen H (2004) Mater Sci Eng R 45:1–88CrossRefGoogle Scholar
  23. 23.
    Thornton JA (1977) Ann Rev Mater Sci 7:239–260ADSCrossRefGoogle Scholar
  24. 24.
    Weinberger MB, Levine JB, Chung HY, Cumberland RW, Rasool HI, Yang JM, Kaner RB, Tolbert SH (2009) Chem Mater 21:1915–1921CrossRefGoogle Scholar
  25. 25.
    Cawkwell MJ, Nguyen-Manh D, Woodward C, Pettifor DG, Vitek V (2005) Science 309:1059–1062ADSCrossRefGoogle Scholar
  26. 26.
    Hogmark S, Jacobson S, Larsson M (2000) Wear 246:20–23CrossRefGoogle Scholar
  27. 27.
    Huang Y, Zhang F, Hwang KC, Nix WD, Pharr GM, Feng G (2006) J Mech Phys Solids 54:1668–1686ADSMATHCrossRefGoogle Scholar
  28. 28.
    Autry T, Lynch F, Tulbure D (1998) Surface mount package with low coefficient of thermal expansion. US Patent 5,821,617Google Scholar
  29. 29.
    Halvorson JJ, Wimber RT (1972) J Appl Phys 43:2519–2522ADSCrossRefGoogle Scholar
  30. 30.
    Richards MR (1996) Process development for IrAl coated SiC-C functionally graded material for the oxidation protection of graphite, PhD thesis, University of WashingtonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Wangping Wu
    • 1
  • Xin Lin
    • 2
  • Zhaofeng Chen
    • 1
  • Zhou Chen
    • 1
  • Xiangna Cong
    • 1
  • Tengzhou Xu
    • 1
  • Jinlian Qiu
    • 1
  1. 1.College of Material Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations