Plasma Chemistry and Plasma Processing

, Volume 30, Issue 6, pp 761–778 | Cite as

Powder Loading Effects of Yttria-Stabilized Zirconia in Atmospheric dc Plasma Spraying

  • Kentaro Shinoda
  • Yang Tan
  • Sanjay Sampath
Original Paper


Powder loading effects have been reexamined for various yttria-stabilized zirconia powders under atmospheric dc plasma spraying. A laser illumination method was utilized to observe powder injection into the plasma jet, while single particle and ensemble methods to measure particle state parameters. Statistical temperature distributions of in-flight particles suggested a rapid increase in the number of semi-molten particles above a certain powder loading rate. Despite drops in the particle temperature and velocity due to the powder loading effect, the deposition efficiency tends to have increased in some cases. Reliability of the single particle and ensemble methods has also been examined at various powder feed rates. Particle temperature measurement by the ensemble method at low powder feed rates could cause a significant error, which may affect powder injection optimization. Particle plume trajectory was not affected as much by the powder loading, which hence had only a limited effect on the particle diagnostics.


Plasma spraying Loading effects Diagnostics Particle state parameters Temperature distribution 



This work is supported by the GOALI-FRG program sponsored by the U.S. National Science Foundation under award CMMI 0605704. Support through the Industrial Consortium for Thermal Spray Technology is gratefully acknowledged. The experimental work regarding the high power conditions utilizing a Triplex Pro-200 plasma torch was conducted at Sulzer Metco. Powder injection was observed with the help of Mr. Daniel Crawford, Control Vision Inc. We also would like to thank Mr. Travis Wentz and Dr. Vasudevan Srinivasan for their help in the spray experiments and Mr. Jose R. Colmenares-Angulo for useful discussion on the sensors. We also appreciate Dr. Christian Moreau, National Research Council Canada, for his valuable comment on the single particle measurement at high powder feed rates.


  1. 1.
    Sampath S, Srinivasan V, Valarezo A, Vaidya A, Streibl T (2009) J Therm Spray Technol 18(2):243CrossRefADSGoogle Scholar
  2. 2.
    Dwivedi G, Wentz T, Sampath S, Nakamura T (2010) J Therm Spray Technol 19(4):695CrossRefADSGoogle Scholar
  3. 3.
    Proulx P, Mostaghimi J, Boulos MI (1985) Int J Heat Mass Transf 28(7):1327CrossRefGoogle Scholar
  4. 4.
    Mellali M, Fauchais P, Grimaud A (1996) Surf Coat Technol 81(2):275CrossRefGoogle Scholar
  5. 5.
    Proulx P, Mostaghimi J, Boulos MI (1987) Plasma Chem Plasma Process 7(1):29CrossRefGoogle Scholar
  6. 6.
    Smith RW, Wei D, Apelian D (1989) Plasma Chem Plasma Process 9(1):135SCrossRefGoogle Scholar
  7. 7.
    Jog MA, Huang L (1994) Multiphase flow and heat transfer in materials processing, FED-Vol 201/HTD-Vol 297, ASME, New York, p 25Google Scholar
  8. 8.
    Ye RB, Proulx P, Boulos MI (2000) J Phys D-Appl Phys 33(17):2154CrossRefADSGoogle Scholar
  9. 9.
    Surov NS (1969) High Temp 7:276Google Scholar
  10. 10.
    Lee YC, Pfender E (1987) Plasma Chem Plasma Process 7(1):1CrossRefGoogle Scholar
  11. 11.
    Vardelle A, Vardelle M, Fauchais P, Proulx P, Boulos MI (1992) Thermal spray: international advances in coatings technology: proceedings of the 13th international thermal spray conference, Berndt CC, Ed, May 25–June 5, 1992, Orlando, Florida, ASM International, Ohio, p 543Google Scholar
  12. 12.
    Xiong HB, Zheng LL, Sampath S, Williamson RL, Fincke JR (2004) Int J Heat Mass Transf 47(24):5189MATHCrossRefGoogle Scholar
  13. 13.
    Choquet I, Nylen P, Wigren J, Aero V (2004) Thermal spray 2004: advances in technology and application: proceedings of the international thermal spray conference 2004, May 10–12, 2004, Osaka, Japan, ASM International, Ohio, p 691Google Scholar
  14. 14.
    Wan YP, Prasad V, Wang G-X, Sampath S, Fincke JR (1999) J Heat Transf 121(3):691CrossRefGoogle Scholar
  15. 15.
    Shinoda K, Kojima Y, Yoshida T (2005) J Therm Spray Technol 14(4):511CrossRefADSGoogle Scholar
  16. 16.
    Xiong HB, Zheng LL, Streibl T (2006) Plasma Chem Plasma Process 26(1):53CrossRefGoogle Scholar
  17. 17.
    Streibl T, Vaidya A, Friis M, Srinivasan V, Sampath S (2006) Plasma Chem Plasma Process 26(1):73CrossRefGoogle Scholar
  18. 18.
    Mauer G, Vassen R, Stover D (2008) Int J Thermophys 29(2):764CrossRefGoogle Scholar
  19. 19.
    Srinivasan V, Sampath S (2010) J Therm Spray Technol 19(1–2):476CrossRefADSGoogle Scholar
  20. 20.
    Vardelle M, Vardelle A, Fauchais P, Li K-I, Dussoubs B, Themelis NJ (2001) J Therm Spray Technol 10(2):267CrossRefADSGoogle Scholar
  21. 21.
    Srinivasan V, Friis M, Vaidya A, Streibl T, Sampath S (2007) Plasma Chem Plasma Process 27(5):609CrossRefGoogle Scholar
  22. 22.
    Fincke JR, Haggard DC, Swank WD (2001) J Therm Spray Technol 10(2):255CrossRefADSGoogle Scholar
  23. 23.
    Mauer G, Vassen R, Stover D (2007) J Therm Spray Technol 16(3):414CrossRefADSGoogle Scholar
  24. 24.
    Vardelle M, Vardelle A, Fauchais P, Moreau C (1994) Meas Sci Technol 5(3):205CrossRefADSGoogle Scholar
  25. 25.
    Shinoda K, Raessi M, Mostaghimi J, Yoshida T, Murakami H (2009) J Therm Spray Technol 18(4):609CrossRefADSGoogle Scholar
  26. 26.
    Leblanc L, Moreau C (2002) J Therm Spray Technol 11(3):380CrossRefADSGoogle Scholar
  27. 27.
    Xiong HB, Zheng LL, Li L, Vaidya A (2005) Int J Heat Mass Transf 48(25–26):5121MATHCrossRefGoogle Scholar
  28. 28.
    Escure C, Vardelle M, Fauchais P (2003) Plasma Chem Plasma Process 23(2):185CrossRefGoogle Scholar
  29. 29.
    Zhang XC, Xu BS, Tu ST, Xuan FZ, Wang HD, Wu YX (2008) Appl Surf Sci 254(20):6318CrossRefADSGoogle Scholar
  30. 30.
    Malmberg S, Heberlein J (1993) J Therm Spray Technol 2(4):339CrossRefADSGoogle Scholar
  31. 31.
    Sampath S, Jiang XY, Matejicek J, Leger AC, Vardelle A (1999) Mater Sci Eng A-Struct Mater Prop Microstruct Process 272(1):181Google Scholar
  32. 32.
    Shinoda K, Murakami H (2010) J Therm Spray Technol 19(3):602CrossRefADSGoogle Scholar
  33. 33.
    Tanaka Y, Fukumoto M (1999) Surf Coat Technol 120–121:124CrossRefGoogle Scholar
  34. 34.
    Matejicek J, Sampath S (2003) Acta Mater 51(3):863CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Center for Thermal Spray Research (CTSR), Department of Materials Science and EngineeringStony Brook UniversityStony BrookUSA

Personalised recommendations