Plasma Chemistry and Plasma Processing

, Volume 30, Issue 6, pp 855–871 | Cite as

Degradation of Acid Orange 7 by Gliding Arc Discharge Plasma in Combination with Advanced Fenton Catalysis

  • ChangMing Du
  • LuLu Zhang
  • Jing Wang
  • ChuangRong Zhang
  • HongXia Li
  • Ya Xiong
Original Paper


A new plasma–catalysis process of gliding arc discharge (GAD) plasma with zero–valent iron (ZVI) was examined. Because GAD plasma creates an acidic environment, solid iron releases ferrous ions which act as a catalyst for the decomposition of the hydrogen peroxide. A comparative study of the catalytic effects between Fe2+ and Fe0 in GAD plasma was investigated. The decolorization reactions of Acid Orange 7 (AO7) followed pseudo–first–order kinetics. And the rate constants for the process of GAD with ZVI was increased by 30% and by 19%, respectively, compared with the process of GAD alone and the process of GAD with ferrous. The investigations of solution pH and hydrogen peroxide both demonstrated that the GAD plasma induced conditions are much suitable for advanced Fenton reactions. The corrosion of ZVI in GAD plasma can give continuous ferrous ions to sustain Fenton reaction. Also, ZVI was demonstrated to have favorable reusable feature.


Gliding arc discharge Plasma Fenton reaction Acid Orange 7 Degradation 



The project is supported by the National Nature Science Foundation (50908237, 20977117), Specialized Research Fund for Doctoral Program of Higher Education of China (200805581036), Guangdong Provincial Nature Science Foundation (845102750100150, 92510027501000005), Fundamental Research Funds for the Central Universities (09lgpy21) and Project of New Technology and Process of Guangzhou EPA (2009–03).


  1. 1.
    Brown MA, De Vito SC (1993) Crit Rev Environ Sci Technol 23:249CrossRefGoogle Scholar
  2. 2.
    Ramirez JH, Duarte FM, Martins FG, Costa CA, Madeira LM (2009) Chem Eng J 148:394CrossRefGoogle Scholar
  3. 3.
    Velegraki T, Poulios I, Charalabaki M, Kalogerakis N, Samaras P, Mantzavinos D (2006) Appl Catal B Environ 62:159CrossRefGoogle Scholar
  4. 4.
    Hammami S, Bellakhal N, Oturan N, Oturan MA, Dachraoui M (2008) Chemosphere 73:678CrossRefGoogle Scholar
  5. 5.
    Nakano Y, Okawa K, Nishijima W, Okada M (2003) Water Res 37:2595CrossRefGoogle Scholar
  6. 6.
    Chen Y, Yang S, Wang K, Lou L (2005) J Photochem Photobiol A 172:47CrossRefGoogle Scholar
  7. 7.
    Mok YS, Jo J-O, Whitehead JC (2008) Chem Eng J 142:56CrossRefGoogle Scholar
  8. 8.
    Zhang S–J, Yu H–Q, Zhao Y (2005) Water Res 39:839CrossRefGoogle Scholar
  9. 9.
    Inoue M, Okada F, Sakurai A, Sakakibara M (2006) Ultrason Sonochem 13:313Google Scholar
  10. 10.
    Truong GL, Laat JDD, Legube B (2004) Water Res 38:2384CrossRefGoogle Scholar
  11. 11.
    Czenichovski A (1994) Pure Appl Chem 66:1301CrossRefGoogle Scholar
  12. 12.
    Abdelmalek F, Torres RA, Combet E, Petrier C, Pulgarin C, Addou A (2008) Sep Purif Technol 63:30CrossRefGoogle Scholar
  13. 13.
    Yan JH, Du CM, Li XD, Sun XD, Ni MJ, Cen KF, Cheron B (2005) Plasma Sources Sci Technol 14:637ADSCrossRefGoogle Scholar
  14. 14.
    Yu L, Li X, Tu X, Wang Y, Lu S, Yan J (2009) J Phys Chem A 114:360CrossRefGoogle Scholar
  15. 15.
    Rivas FJ, Carbajo M, Beltrán F, Gimeno O, Frades J (2008) J Hazard Mater 155:407CrossRefGoogle Scholar
  16. 16.
    Wang H, Li J, Quan X, Wu Y (2008) Appl Catal B Environ 83:72CrossRefGoogle Scholar
  17. 17.
    Wang Y, Zhao D, Ma W, Chen C, Zhao J (2008) Environ Sci Technol 42:6173CrossRefGoogle Scholar
  18. 18.
    Feng J, Hu X, Yue PL (2003) Environ Sci Technol 38:269CrossRefGoogle Scholar
  19. 19.
    Tezcanli–Güyer G, Ince NH (2004) Ultrasonics 42:603CrossRefGoogle Scholar
  20. 20.
    Sunka P (2001) Phys Plasmas 8:2587ADSCrossRefGoogle Scholar
  21. 21.
    Ghezzar MR, Abdelmalek F, Belhadj M, Benderdouche N, Addou A (2007) Appl Catal B Environ 72:304CrossRefGoogle Scholar
  22. 22.
    Maroulf–Khelifa K, Abdelmalek F, Khelifa A, Addou A (2008) Chemosphere 70:1995CrossRefGoogle Scholar
  23. 23.
    Burlica R, Locke B (2009) Gliding arc electrical discharge reactors with improved nozzle configuration, US 2009Google Scholar
  24. 24.
    Du CM, Sun YW, Zhuang XF (2008) Plasma Chem Plasma Process 28:523CrossRefGoogle Scholar
  25. 25.
    Burlica R, Kirkpatrick MJ, Locke BR (2006) J Electrostat 64:35CrossRefGoogle Scholar
  26. 26.
    Koprivanac N, Kusic H, Vujevic D, Peternel I, Locke BR (2005) J Hazard Mater 117:113CrossRefGoogle Scholar
  27. 27.
    Hao X, Zhou M, Xin Q, Lei L (2007) Chemosphere 66:2185CrossRefGoogle Scholar
  28. 28.
    Mededovic S, Locke BR (2007) Appl Catal B Environ 72:342CrossRefGoogle Scholar
  29. 29.
    Zhang H, Zhang J, Zhang C, Liu F, Zhang D (2009) Ultrason Sonochem 16:325CrossRefGoogle Scholar
  30. 30.
    Bremner DH, Burgess AE, Houllemare D, Namkung K–C (2006) Appl Catal B Environ 63:15CrossRefGoogle Scholar
  31. 31.
    Anotai J, Lu M–C, Chewpreecha P (2006) Water Res 40:1841CrossRefGoogle Scholar
  32. 32.
    Namkung KC, Burgess AE, Bremner DH, Staines H (2008) Ultrason Sonochem 15:171CrossRefGoogle Scholar
  33. 33.
    Chakinala AG, Bremner DH, Gogate PR, Namkung K–C, Burgess AE (2008) Appl Catal B Environ 78:11CrossRefGoogle Scholar
  34. 34.
    Du CM, Shi TH, Sun YW, Zhuang XF (2008) J Hazard Mater 154:1192CrossRefGoogle Scholar
  35. 35.
    Benstaali B, Boubert P, Cheron B, Addou A, Brisset J (2002) Plasma Chem Plasma Process 22:553CrossRefGoogle Scholar
  36. 36.
    Eisenberg G (1943) Ind Eng Chem Anal Ed 15:327CrossRefGoogle Scholar
  37. 37.
    Kallel M, Belaid C, Mechichi T, Ksibi M, Elleuch B (2009) Chem Eng J 150:391CrossRefGoogle Scholar
  38. 38.
    Nam S, Tratnyek PG (2000) Water Res 34:1837CrossRefGoogle Scholar
  39. 39.
    Zhang H, Duan L, Zhang Y, Wu F (2005) Dyes Pigments 65:39CrossRefGoogle Scholar
  40. 40.
    Özcan A, Oturan MA, Oturan N, Sahin Y (2009) J Hazard Mater 163:1213CrossRefGoogle Scholar
  41. 41.
    Ghezzar MR, Abdelmalek F, Belhadj M, Benderdouche N, Addou A (2009) J Hazard Mater 164:1266CrossRefGoogle Scholar
  42. 42.
    Yan JH, Liu YN, Bo Z, Li XD, Cen KF (2008) J Hazard Mater 157:441CrossRefGoogle Scholar
  43. 43.
    Gao J, Liu Y, Yang W, Pu L, Yu J, Lu Q (2003) Plasma Sources Sci Technol 12:533ADSCrossRefGoogle Scholar
  44. 44.
    Duesterberg CK, Mylon SE, Waite TD (2008) Environ Sci Technol 42:8522CrossRefGoogle Scholar
  45. 45.
    Jeong J, Yoon J (2005) Water Res 39:2893CrossRefGoogle Scholar
  46. 46.
    Tang WZ, Chen RZ (1996) Chemosphere 32:947CrossRefGoogle Scholar
  47. 47.
    Wang L, Jiang X (2009) J Hazard Mater 161:926CrossRefGoogle Scholar
  48. 48.
    Duesterberg CK, Waite TD (2006) Environ Sci Technol 40:4189CrossRefGoogle Scholar
  49. 49.
    Gotpagar J, Lyuksyutov S, Cohn R, Grulke E, Bhattacharyya D (1999) Langmuir 15:8412CrossRefGoogle Scholar
  50. 50.
    Zhou T, Li Y, Ji J, Wong F–S, Lu X (2008) Sep Purif Technol 62:551CrossRefGoogle Scholar
  51. 51.
    Huang YH, Zhang TC (2005) Water Res 39:1751CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • ChangMing Du
    • 1
  • LuLu Zhang
    • 1
  • Jing Wang
    • 1
  • ChuangRong Zhang
    • 1
  • HongXia Li
    • 1
  • Ya Xiong
    • 1
  1. 1.School of Environmental Science and EngineeringSun Yat–Sen UniversityGuangzhouChina

Personalised recommendations