Skip to main content
Log in

Degradation of Acid Orange 7 by Gliding Arc Discharge Plasma in Combination with Advanced Fenton Catalysis

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A new plasma–catalysis process of gliding arc discharge (GAD) plasma with zero–valent iron (ZVI) was examined. Because GAD plasma creates an acidic environment, solid iron releases ferrous ions which act as a catalyst for the decomposition of the hydrogen peroxide. A comparative study of the catalytic effects between Fe2+ and Fe0 in GAD plasma was investigated. The decolorization reactions of Acid Orange 7 (AO7) followed pseudo–first–order kinetics. And the rate constants for the process of GAD with ZVI was increased by 30% and by 19%, respectively, compared with the process of GAD alone and the process of GAD with ferrous. The investigations of solution pH and hydrogen peroxide both demonstrated that the GAD plasma induced conditions are much suitable for advanced Fenton reactions. The corrosion of ZVI in GAD plasma can give continuous ferrous ions to sustain Fenton reaction. Also, ZVI was demonstrated to have favorable reusable feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Brown MA, De Vito SC (1993) Crit Rev Environ Sci Technol 23:249

    Article  Google Scholar 

  2. Ramirez JH, Duarte FM, Martins FG, Costa CA, Madeira LM (2009) Chem Eng J 148:394

    Article  Google Scholar 

  3. Velegraki T, Poulios I, Charalabaki M, Kalogerakis N, Samaras P, Mantzavinos D (2006) Appl Catal B Environ 62:159

    Article  Google Scholar 

  4. Hammami S, Bellakhal N, Oturan N, Oturan MA, Dachraoui M (2008) Chemosphere 73:678

    Article  Google Scholar 

  5. Nakano Y, Okawa K, Nishijima W, Okada M (2003) Water Res 37:2595

    Article  Google Scholar 

  6. Chen Y, Yang S, Wang K, Lou L (2005) J Photochem Photobiol A 172:47

    Article  Google Scholar 

  7. Mok YS, Jo J-O, Whitehead JC (2008) Chem Eng J 142:56

    Article  Google Scholar 

  8. Zhang S–J, Yu H–Q, Zhao Y (2005) Water Res 39:839

    Article  Google Scholar 

  9. Inoue M, Okada F, Sakurai A, Sakakibara M (2006) Ultrason Sonochem 13:313

    Google Scholar 

  10. Truong GL, Laat JDD, Legube B (2004) Water Res 38:2384

    Article  Google Scholar 

  11. Czenichovski A (1994) Pure Appl Chem 66:1301

    Article  Google Scholar 

  12. Abdelmalek F, Torres RA, Combet E, Petrier C, Pulgarin C, Addou A (2008) Sep Purif Technol 63:30

    Article  Google Scholar 

  13. Yan JH, Du CM, Li XD, Sun XD, Ni MJ, Cen KF, Cheron B (2005) Plasma Sources Sci Technol 14:637

    Article  ADS  Google Scholar 

  14. Yu L, Li X, Tu X, Wang Y, Lu S, Yan J (2009) J Phys Chem A 114:360

    Article  Google Scholar 

  15. Rivas FJ, Carbajo M, Beltrán F, Gimeno O, Frades J (2008) J Hazard Mater 155:407

    Article  Google Scholar 

  16. Wang H, Li J, Quan X, Wu Y (2008) Appl Catal B Environ 83:72

    Article  Google Scholar 

  17. Wang Y, Zhao D, Ma W, Chen C, Zhao J (2008) Environ Sci Technol 42:6173

    Article  Google Scholar 

  18. Feng J, Hu X, Yue PL (2003) Environ Sci Technol 38:269

    Article  Google Scholar 

  19. Tezcanli–Güyer G, Ince NH (2004) Ultrasonics 42:603

    Article  Google Scholar 

  20. Sunka P (2001) Phys Plasmas 8:2587

    Article  ADS  Google Scholar 

  21. Ghezzar MR, Abdelmalek F, Belhadj M, Benderdouche N, Addou A (2007) Appl Catal B Environ 72:304

    Article  Google Scholar 

  22. Maroulf–Khelifa K, Abdelmalek F, Khelifa A, Addou A (2008) Chemosphere 70:1995

    Article  Google Scholar 

  23. Burlica R, Locke B (2009) Gliding arc electrical discharge reactors with improved nozzle configuration, US 2009

  24. Du CM, Sun YW, Zhuang XF (2008) Plasma Chem Plasma Process 28:523

    Article  Google Scholar 

  25. Burlica R, Kirkpatrick MJ, Locke BR (2006) J Electrostat 64:35

    Article  Google Scholar 

  26. Koprivanac N, Kusic H, Vujevic D, Peternel I, Locke BR (2005) J Hazard Mater 117:113

    Article  Google Scholar 

  27. Hao X, Zhou M, Xin Q, Lei L (2007) Chemosphere 66:2185

    Article  Google Scholar 

  28. Mededovic S, Locke BR (2007) Appl Catal B Environ 72:342

    Article  Google Scholar 

  29. Zhang H, Zhang J, Zhang C, Liu F, Zhang D (2009) Ultrason Sonochem 16:325

    Article  Google Scholar 

  30. Bremner DH, Burgess AE, Houllemare D, Namkung K–C (2006) Appl Catal B Environ 63:15

    Article  Google Scholar 

  31. Anotai J, Lu M–C, Chewpreecha P (2006) Water Res 40:1841

    Article  Google Scholar 

  32. Namkung KC, Burgess AE, Bremner DH, Staines H (2008) Ultrason Sonochem 15:171

    Article  Google Scholar 

  33. Chakinala AG, Bremner DH, Gogate PR, Namkung K–C, Burgess AE (2008) Appl Catal B Environ 78:11

    Article  Google Scholar 

  34. Du CM, Shi TH, Sun YW, Zhuang XF (2008) J Hazard Mater 154:1192

    Article  Google Scholar 

  35. Benstaali B, Boubert P, Cheron B, Addou A, Brisset J (2002) Plasma Chem Plasma Process 22:553

    Article  Google Scholar 

  36. Eisenberg G (1943) Ind Eng Chem Anal Ed 15:327

    Article  Google Scholar 

  37. Kallel M, Belaid C, Mechichi T, Ksibi M, Elleuch B (2009) Chem Eng J 150:391

    Article  Google Scholar 

  38. Nam S, Tratnyek PG (2000) Water Res 34:1837

    Article  Google Scholar 

  39. Zhang H, Duan L, Zhang Y, Wu F (2005) Dyes Pigments 65:39

    Article  Google Scholar 

  40. Özcan A, Oturan MA, Oturan N, Sahin Y (2009) J Hazard Mater 163:1213

    Article  Google Scholar 

  41. Ghezzar MR, Abdelmalek F, Belhadj M, Benderdouche N, Addou A (2009) J Hazard Mater 164:1266

    Article  Google Scholar 

  42. Yan JH, Liu YN, Bo Z, Li XD, Cen KF (2008) J Hazard Mater 157:441

    Article  Google Scholar 

  43. Gao J, Liu Y, Yang W, Pu L, Yu J, Lu Q (2003) Plasma Sources Sci Technol 12:533

    Article  ADS  Google Scholar 

  44. Duesterberg CK, Mylon SE, Waite TD (2008) Environ Sci Technol 42:8522

    Article  Google Scholar 

  45. Jeong J, Yoon J (2005) Water Res 39:2893

    Article  Google Scholar 

  46. Tang WZ, Chen RZ (1996) Chemosphere 32:947

    Article  Google Scholar 

  47. Wang L, Jiang X (2009) J Hazard Mater 161:926

    Article  Google Scholar 

  48. Duesterberg CK, Waite TD (2006) Environ Sci Technol 40:4189

    Article  Google Scholar 

  49. Gotpagar J, Lyuksyutov S, Cohn R, Grulke E, Bhattacharyya D (1999) Langmuir 15:8412

    Article  Google Scholar 

  50. Zhou T, Li Y, Ji J, Wong F–S, Lu X (2008) Sep Purif Technol 62:551

    Article  Google Scholar 

  51. Huang YH, Zhang TC (2005) Water Res 39:1751

    Article  Google Scholar 

Download references

Acknowledgments

The project is supported by the National Nature Science Foundation (50908237, 20977117), Specialized Research Fund for Doctoral Program of Higher Education of China (200805581036), Guangdong Provincial Nature Science Foundation (845102750100150, 92510027501000005), Fundamental Research Funds for the Central Universities (09lgpy21) and Project of New Technology and Process of Guangzhou EPA (2009–03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangMing Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, C., Zhang, L., Wang, J. et al. Degradation of Acid Orange 7 by Gliding Arc Discharge Plasma in Combination with Advanced Fenton Catalysis. Plasma Chem Plasma Process 30, 855–871 (2010). https://doi.org/10.1007/s11090-010-9249-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-010-9249-0

Keywords

Navigation