Advertisement

Plasma Chemistry and Plasma Processing

, Volume 30, Issue 5, pp 607–617 | Cite as

Influence of Power Modulation on Ozone Production Using an AC Surface Dielectric Barrier Discharge in Oxygen

  • M. Šimek
  • S. Pekárek
  • V. Prukner
Original Paper

Abstract

The measurements of electro-optical discharge characteristics and concentration of produced ozone were performed to evaluate the efficiency of ozone production in an AC surface dielectric barrier discharge (SDBD) in pure oxygen at atmospheric pressure. The discharge was driven in an amplitude-modulated regime with a driving AC frequency of 1 kHz, variable discharge duty cycle of 0.01–0.8 and oxygen flow rate of 2.5–10 slm. We observed asymmetric SDBD behaviour as evidenced by the variation in the ratio of the OI/O2 + emission intensities registered during the positive/negative half-periods and complemented by the transferred charge measurements through the Lissajous figures. We also found a strong dependence of O3 concentration on the discharge duty cycle. The highest calculated ozone production yield reached 170 g/kWh with a corresponding energy cost of about 10 eV/molecule when combining the lowest inspected duty cycle with the lowest AC high voltage amplitude.

Keywords

Ozone Surface DBD Oxygen Production efficiency 

Notes

Acknowledgments

This work was supported by the Czech Science Foundation (GAČR contract no. 202/09/0176).

References

  1. 1.
    Eliasson B, Hirth M, Kogelschatz U (1987) J Phys D Appl Phys 20:1421CrossRefADSGoogle Scholar
  2. 2.
    Kogelschatz U, Eliasson B, Hirth M (1988) Ozone Sci Eng 10:367Google Scholar
  3. 3.
    Eliasson B, Kogelschatz U (1991) IEEE Trans Plasma Sci 19:1063CrossRefADSGoogle Scholar
  4. 4.
    Masuda S, Akutsu K, Kuroda M, Awatsu Y, Shibuya Y (1988) IEEE Trans Ind Appl 24:223CrossRefGoogle Scholar
  5. 5.
    Nomoto Y, Ohkubo T, Kanazawa S, Adachi T (1995) IEEE Trans Ind Appl 31:1458CrossRefGoogle Scholar
  6. 6.
    Pietsch GJ, Gibalov V (1998) Pure Appl Chem 70:1169CrossRefGoogle Scholar
  7. 7.
    Ohe K, Kamiya K, Kimura T (1999) IEEE Trans Plasma Sci 27:1582CrossRefADSGoogle Scholar
  8. 8.
    Samaranayake WJM, Miyahara Y, Namihira T, Katsuki S, Hackam R, Akiyama H (2000) IEEE Trans DEI 7:849Google Scholar
  9. 9.
    Sung YM, Sakoda T (2005) Surf Coat Technol 197:148CrossRefGoogle Scholar
  10. 10.
    Miura T, Sato T, Arima K, Mukaigawa S, Takaki K, Fujiwara T (2007) J Adv Oxid Technol 10:311MATHGoogle Scholar
  11. 11.
    Takaki K, Hatanaka Y, Arima K, Mukaigawa S, Fujiwara T (2009) Vacuum 83:128CrossRefGoogle Scholar
  12. 12.
    Šimek M, Ambrico PF, De Benedictis S, Dilecce G, Prukner V, Schmidt J (2010) J Phys D Appl Phys 43:124003CrossRefADSGoogle Scholar
  13. 13.
    Gibalov VI, Pietsch GJ (2000) J Phys D Appl Phys 33:2618CrossRefADSGoogle Scholar
  14. 14.
    Korzec D, Finantu-Dinu EG, Dinu GL, Engemann J, Štefečka M, Kando M (2003) Surf Coat Technol 174–175:503CrossRefGoogle Scholar
  15. 15.
    Enloe CL, McLaughlin TE, Van Dyken RD, Kachner KD (2004) AIAA J 42:589CrossRefADSGoogle Scholar
  16. 16.
    Pons J, Moreau E, Touchard G (2005) J Phys D Appl Phys 38:3635CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Pulse Plasma Systems, Institute of Plasma Physics v.v.i.Academy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations