Plasma Chemistry and Plasma Processing

, Volume 30, Issue 4, pp 489–502 | Cite as

Synthesis of Hydrogen Peroxide Using Dielectric Barrier Discharge Associated with Fibrous Materials

  • F. Thevenet
  • J. Couble
  • M. Brandhorst
  • J. L. Dubois
  • E. Puzenat
  • C. Guillard
  • D. Bianchi
Original Paper


A new synthesis pathway toward hydrogen peroxide has been investigated using non-thermal plasma. This work is aimed at studying the activation of oxygen/hydrogen mixtures by a cylindrical dielectric barrier discharge. An experimental device has been especially developed for this application, it mainly differs from other cylindrical discharges in that the liquid ground electrode, and subsequently the reactor, can be regulated in temperature. The formation of hydrogen peroxide is reported (1) in a gas phase discharge and (2) in surface discharge. The gas phase discharge, characterized by an empty discharge gap, lead to a low activation of O2 into O2/H2 mixtures and poor selectivity toward H2O2. The modification of the discharge into a surface discharge, by introducing in the gap fibrous materials, considerably improves the efficiency of the process. The influence of the temperature on H2O2 formation is discussed and correlated to the formation of a water layer on fibre surface. This layer appears to be a crucial point into H2O2 plasma synthesis. The presence of TiO2 on the fibre surface is reported as improving the stabilisation of hydrogen peroxide. The formation of a complex between H2O2 and TiO2 is suggested and discussed. The formation of H2O2 in the gas phase or in the aqueous condensed phase is finally discussed. The investigation of the influence of the reactant gas composition and the presence or not of water, lead to the conclusion that (1) both H2 and O2 are required to achieve the synthesis reaction; (2) H2O2 is formed in the gas phase and then solubilised and/or stabilised in the water layer. A global reaction pathway is finally proposed to summarize the synthesis reaction.


H2O2 Non-thermal plasma Fibrous material TiO2 Liquid film 


  1. 1.
    Geib KH, Harteck G (1932) Ber D D Chem Ges B65:1551CrossRefGoogle Scholar
  2. 2.
    Geib KH, Zeits P (1934) Physik Chemie A169:151Google Scholar
  3. 3.
    Geib KH (1936) J Chem Phys 4:391CrossRefADSGoogle Scholar
  4. 4.
    Rodebush WH, Wahl J (1933) J Phys Chem 1:696–702CrossRefGoogle Scholar
  5. 5.
    Rodebush WH, Campbell J (1936) J Phys Chem 4:293Google Scholar
  6. 6.
    Frost AA, Oldenberg O (1936) J Chem Phys 4:781–785CrossRefADSGoogle Scholar
  7. 7.
    Rodebush WH, Keiser CR, McKee FS, Quagliano JV (1947) J Am Chem Soc 69:538–539CrossRefGoogle Scholar
  8. 8.
    Volnov II, Tsentsiper AB, Chamova VN (1961) Izvestiya Akademii Nauk SSSR 3:530Google Scholar
  9. 9.
    Jones RA, Chan W, Venugopalan M (1969) J Phys Chem 73:3683–3697Google Scholar
  10. 10.
    Ohara E (1940) J Chem Soc Jpn 61:569Google Scholar
  11. 11.
    Venugopalan M, Shih AL (1981) Plasma Chem Plasma Proc 1:191–200CrossRefGoogle Scholar
  12. 12.
    Zhou J, Guo H, Wang X, Guo M, Zhao J, Chen L, Gong W (2005) Chem Comm 12:1631–1634CrossRefGoogle Scholar
  13. 13.
    Morinaga K (1962) Bull Chem Soc Jpn 35:345–348CrossRefGoogle Scholar
  14. 14.
    Morinaga K (1962) Bull Chem Soc Jpn 35:625–626CrossRefGoogle Scholar
  15. 15.
    Grimonpre DR, Finney WC, Clarck RJ, Locke BR (2004) Ind Eng Chem Res 43:1975–1989CrossRefGoogle Scholar
  16. 16.
    Kirkpatrick MJ, Locke BR (2005) Ind Eng Chem Res 44:4243–4248CrossRefGoogle Scholar
  17. 17.
    Kirkpatrick MJ, Locke BR (2005) Ind Eng Chem Res 45:2138–2142CrossRefGoogle Scholar
  18. 18.
    Giguere PA (1975) Masson-Edition. Complément au Nouveau Traité de Chimie Minérale, ParisGoogle Scholar
  19. 19.
    Manley TC (1943) Trans Electrochem Soc 84:83–96Google Scholar
  20. 20.
    Falkenstein Z, Coogan J (1997) J Phys D Appl Phys 30:817–825CrossRefADSGoogle Scholar
  21. 21.
    Eisenberg GM (1954) Ind Eng Chem 15:327–328Google Scholar
  22. 22.
    Giguere PA (1975) Masson-Edition. Nouveau Traité de Chimie Minérale, ParisGoogle Scholar
  23. 23.
    Taube H, Bray WC (1940) J Am Chem Soc 62:3357–3373CrossRefGoogle Scholar
  24. 24.
    Wallington TJ, Jucks KW, Tydall GS (1998) Int J Chem Kin 30:707–709CrossRefGoogle Scholar
  25. 25.
    Kuraica MM, Obradovic BM, Manojlovic D, Ostojic DR, Puric J (2004) Vacuum 73:705–708CrossRefGoogle Scholar
  26. 26.
    Park SL, Moon JD, Lee SH, Shin SY (2006) J Electrostat 64:275–282CrossRefGoogle Scholar
  27. 27.
    Ayrault C, Barrault J, Blin-Simiand N, Jorand F, Pasquiers S, Rousseau A, Tatibouët JM (2004) Catal Today 89:75–81CrossRefGoogle Scholar
  28. 28.
    Kim HH, Oh SM, Ogata A, Futamura S (2005) Appl Catal B Env 56:213–220CrossRefGoogle Scholar
  29. 29.
    Burlica R, Kirkpatrick MJ, Locke BR (2006) J Electrostat 64:35–43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • F. Thevenet
    • 1
    • 2
  • J. Couble
    • 3
  • M. Brandhorst
    • 4
  • J. L. Dubois
    • 4
  • E. Puzenat
    • 3
  • C. Guillard
    • 3
  • D. Bianchi
    • 3
  1. 1.Université Lille-Nord-de-FranceLilleFrance
  2. 2.Department of Chimie & EnvironnementEcole des Mines de DouaiDouaiFrance
  3. 3.IRCELYON Institut de Recherches sur la Catalyse et l’Environnement de LyonVilleurbanneFrance
  4. 4.Arkema CRRAPierre-BéniteFrance

Personalised recommendations