Advertisement

Plasma Chemistry and Plasma Processing

, Volume 30, Issue 1, pp 43–53 | Cite as

Influence of the Outer Electrode Material on Ozone Generation in Corona Discharges

  • G. Horvath
  • J. D. Skalny
  • J. Orszagh
  • R. Vladoiu
  • N. J. Mason
Original Paper

Abstract

The effect of the outer electrode material on negative corona discharge current and the process of ozone formation have been studied in coaxial cylindrical system of electrodes fed by dry oxygen. Three materials (brass, duralumin, stainless steel) were tested in experiments. The probability coefficient of ozone decomposition was found be slightly higher compared with known data. The coefficient of probability of ozone decomposition is decreasing with the time of exposition of the metal surface to mixture of oxygen and ozone. The effect of the electrode material on the current voltage characteristic of the discharge was marginal. In contrast to this at average energy density η higher than 10 J/cm3 the ozone concentration is affected by material of the outer electrode. A strong influence of the temperature of metal electrode on the probability coefficient of ozone decomposition was illustrated from the decrease of the ozone production.

Keywords

Corona discharge Ozone Carbon dioxide Electrode material 

Notes

Acknowledgments

This research project was partially supported Slovak Grant Agency VEGA 1/4017/07, ESF projects COST P9 and EIPAM. This work was also supported by Slovak Science and Technology Assistance Agency under the contract No. APVT-20-007504.

References

  1. 1.
    Peyrous R, Lacaze C (1986) Ozone-Sci Eng 8:107Google Scholar
  2. 2.
    Nashimoto K (1988) J Imaging Sci Techn 32:205Google Scholar
  3. 3.
    Boelter KJ, Davidson J (1997) Aerosol Sci Tech 27:689CrossRefGoogle Scholar
  4. 4.
    Yehia A, Mizuno A (2005) Industry applications conference, 40th IAS annual meeting, vol. 3, p 1828Google Scholar
  5. 5.
    Fedor J, Mikoviny T, Holubcik L (1999) Proceedings of WDS 99 June, 22–26, part. 2, Prague, Czech Republic, 377, ISBN 80-85863-46-4Google Scholar
  6. 6.
    Skalny JD, Stoica A, Orszagh J, Vladoiu R, Mason NJ (2008) J Phys D Appl Phys 41(17):175211CrossRefADSGoogle Scholar
  7. 7.
    Pontiga F, Soria C, Castellanos A (2004) Annual report conference on electrical insulation and dielectric phenomena, CEIDP’04, 568–571. doi: 10.1109/CEIDP.2004.1364313
  8. 8.
    Chen J, Davidson JH (2002) Plasma Chem Plasma P 22(2):199CrossRefGoogle Scholar
  9. 9.
    Yanallah K, Hadj Ziane S, Belasri A (2006) Plasma Devices Oper 14:215CrossRefGoogle Scholar
  10. 10.
    Lunin VV, Popovich MP, Tchakenko SN (1998) Fizecheskaja khimiia ozona. Izdatelstvo Moskovskogo Univerziteta, MoscowGoogle Scholar
  11. 11.
    Townsend HS (1914) Phil Mag 28:83Google Scholar
  12. 12.
    Eliasson B (1985) Electrical discharge in oxygen part 1: basic data, rate coefficients and cross sections (Report KLR 83/40 C, Baden-Dättwil, Switzerland: Brown Boveri ForschungszentrumGoogle Scholar
  13. 13.
    Sullivan RC, Thornberry T, Abbatt JPD (2004) Atmos Chem Phys Discuss 4:1977ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • G. Horvath
    • 1
    • 3
  • J. D. Skalny
    • 1
    • 3
  • J. Orszagh
    • 1
    • 3
  • R. Vladoiu
    • 2
  • N. J. Mason
    • 3
  1. 1.Department of Plasma Physics, FMFIComenius UniversityBratislavaSlovakia
  2. 2.Department of PhysicsOvidius UniversityConstantaRomania
  3. 3.Department of Physics and AstronomyOpen UniversityMilton KeynesUK

Personalised recommendations