Plasma Chemistry and Plasma Processing

, Volume 30, Issue 1, pp 1–20 | Cite as

Chemical and Physical Characteristics of Pulsed Electrical Discharge Within Gas Bubbles in Aqueous Solutions

  • Kai-Yuan Shih
  • Bruce R. Locke
Original paper


The chemical and physical characteristics of pulsed electrical discharge within gas bubbles immersed in an aqueous solution were investigated using a reactor with long protrusion length high voltage needle electrodes. Argon gas was introduced at the base of the needle electrode causing gas bubbles to flow upwards in contact with the needle. The effects of needle protrusion length were evaluated by using 2, 4, and 6 cm length needles under a wide range of power input (3–78 W). No significant differences in chemical or electrical characteristics were found among the different protrusion lengths. H2 and H2O2 generation rates were proportional to input power and the energy yield efficiency for these species was not affected dramatically by input power. The results of discharge within bubbles in aqueous solution were also compared with those for direct liquid phase discharge and gas phase discharge above the liquid surface.


Pulsed electrical discharge Bubbles Hydrogen Hydrogen peroxide Energy yield efficiency Electrode protrusion length 



We thank the National Science Foundation (CBET 0839984) and the Materials Research and Technology Center (Florida State University) for support of this research. General laboratory assistance from Mr. Wright Finney is also greatly appreciated.


  1. 1.
    Chang JS (1991) IEEE Trans Plasma Sci 19:1152CrossRefADSGoogle Scholar
  2. 2.
    Akiyama H (2000) IEEE Trans Dielectr Electr Insul 7:646CrossRefGoogle Scholar
  3. 3.
    Malik MA, Ghaffar A (2001) Plasma Sources Sci Technol 10:82CrossRefADSGoogle Scholar
  4. 4.
    Sunka P, Babicky V, Clupek M, Fuciman M, Luckes P, Simek M, Benes J, Locke B, Majcherova Z (2004) Acta Phys Slovac 54(2):135Google Scholar
  5. 5.
    Locke BR, Sato M, Hoffmann HR, Chang JS (2006) Ind Eng Chem 45:882CrossRefGoogle Scholar
  6. 6.
    Fridman A (2006) Plasma physics and engineering. Taylor and Francis, New YorkGoogle Scholar
  7. 7.
    Fridman A (2008) Plasma chemistry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. 8.
    Stalder KR, McMillen DF, Woloszko J (2005) J Phys D Appl Phys 38(11):1728CrossRefADSGoogle Scholar
  9. 9.
    Laroussi M, Lu X (2005) Appl Phys Lett 87:113902CrossRefADSGoogle Scholar
  10. 10.
    Laroussi M, Fridman A (2008) Plasma Process Polym 5(6):501CrossRefGoogle Scholar
  11. 11.
    Clements JS, Sato M, Davis RH (1987) IEEE Trans Ind Appl 23:224CrossRefGoogle Scholar
  12. 12.
    Lukes P, Appleton A, Locke BR (2004) IEEE Trans Ind Appl 40:60CrossRefGoogle Scholar
  13. 13.
    Grymonpre DR, Finney WC, Clark RJ, Locke BR (2004) Ind Eng Chem Res 43:1975CrossRefGoogle Scholar
  14. 14.
    Bruggeman PJ, Leyes CA (2009) J Phys D Appl Phys 42:1CrossRefGoogle Scholar
  15. 15.
    Burlica R, Kirkpatrick MJ, Finney WC, Locke BR (2004) J Electrostat 62(4):309CrossRefGoogle Scholar
  16. 16.
    Burlica R, Kirkpatrick MJ, Locke BR (2006) J Electrostat 64(1):35CrossRefGoogle Scholar
  17. 17.
    Miyahara T, Ochiai S, Sato T (2009) EPL 86(4):45001CrossRefADSGoogle Scholar
  18. 18.
    Mezei P, Cserfalvi T (2007) Appl Spectrosc Rev 42:573CrossRefADSGoogle Scholar
  19. 19.
    Yamamoto M, Nishioka M, Sadakata M (2002) J Electrostat 56:173CrossRefGoogle Scholar
  20. 20.
    Burlica R, Locke BR (2008) IEEE Trans Ind Appl 44:482CrossRefGoogle Scholar
  21. 21.
    Porter D, Poplin MD, Holzer F, Finney WC, Locke BR (2009) IEEE Trans Ind Appl 45(2):623CrossRefGoogle Scholar
  22. 22.
    Locke BR, Thagard SM (2009) IEEE Trans Plasma Sci 37(4):494CrossRefADSGoogle Scholar
  23. 23.
    Lelievre J, Dubreuil N, Brisset JL (1995) J Phys III 5(4):447CrossRefGoogle Scholar
  24. 24.
    Benstaali B, Moussa D, Addou A, Brisset JL (1998) EPJ AP 42(1):71Google Scholar
  25. 25.
    Herron JT, Green DS (2001) Plasma Chem Plasma Process 21(3):459CrossRefGoogle Scholar
  26. 26.
    Mfopara A, Kirkpatrick MJ, Odic E (2009) Plasma Chem Plasma Process 29(2):91CrossRefGoogle Scholar
  27. 27.
    Jones HM, Kunhardt EE (1994) IEEE Trans Dielectr Electr Insul 1:1016CrossRefGoogle Scholar
  28. 28.
    Jones HM, Kunhardt EE (1995) J Appl Phys 77:795CrossRefADSGoogle Scholar
  29. 29.
    Kao KC, Higham JB (1961) J Electrochem Soc 108:522CrossRefGoogle Scholar
  30. 30.
    Toriyama Y, Sato T, Mitsui H (1964) Br J Appl Phys 15:203CrossRefADSGoogle Scholar
  31. 31.
    Forster EO (1990) J Phys D Appl Phys 23:1056CrossRefGoogle Scholar
  32. 32.
    Korobeinikov SM, Melekhov AV (2002) High Temp 40(5):652CrossRefGoogle Scholar
  33. 33.
    Leipold F, Yu G, Stark RH, Abu-Ghazala A, Schoenbach KH (2000) Proceedings of 24th international power modulator symposium 51Google Scholar
  34. 34.
    An W, Baumung K, Bluhm H (2007) J Appl Phys 101:053302CrossRefADSGoogle Scholar
  35. 35.
    Hara M, Kaneko T, Honda K (1988) IEEE Trans Dielectr Electr Insul 23:769Google Scholar
  36. 36.
    Lukes P, Clupek M, Babicky V, Sunka P (2006) Czech J Phys 56:B196CrossRefGoogle Scholar
  37. 37.
    Holzer F, Locke BR (2008) Plasma Chem Plasma Process 28:1CrossRefGoogle Scholar
  38. 38.
    Miichi T, Ihara S, Sato S, Yamabe C (2000) Vacuum 59:236CrossRefGoogle Scholar
  39. 39.
    Yamabe C, Takeshita F, Miichi T, Hayashi N, Ihara S (2005) Plasma Process Polym 2:246CrossRefGoogle Scholar
  40. 40.
    Gershman S, Mozgina O, Belkind A, Becker K, Kunhart EE (2007) Contrib Plasma Phys 47:19CrossRefADSGoogle Scholar
  41. 41.
    Bruggeman PJ, Leys CA (2006) J Appl Phys 99:116101CrossRefADSGoogle Scholar
  42. 42.
    Bruggeman PJ, Leys CA (2007) J Phys D Appl Phys 40:1937CrossRefADSGoogle Scholar
  43. 43.
    Bruggeman PJ, Degroote J, Vierendeels J, Leys CA (2008) Plasma Sources Sci Technol 17:025008CrossRefADSGoogle Scholar
  44. 44.
    Akishev YU, Aponin G, Grushin M, Karalnik V, Petryakov A, Trushkin N (1917) J Optoelectron Adv Mater 8:1917Google Scholar
  45. 45.
    Shih KY, Locke BR (2009) Plasma Process Polym 6:729CrossRefGoogle Scholar
  46. 46.
    Joshi AA, Locke BR, Arce P, Finney WC (1995) J Hazard Mater 41:3CrossRefGoogle Scholar
  47. 47.
    Grymonpré DR, Sharma SK, Finney WC, Locke BR (2001) Chem Eng J 82:189CrossRefGoogle Scholar
  48. 48.
    Kirkpatrick MJ, Locke BR (2005) Ind Eng Chem Res 44:4243CrossRefGoogle Scholar
  49. 49.
    Sahni M, Locke BR (2006) Ind Eng Chem Res 45:5819CrossRefGoogle Scholar
  50. 50.
    Sahni M, Locke BR (2006) Plasma Process Polym 3(4–5):342CrossRefGoogle Scholar
  51. 51.
    Mededovic S, Locke BR (2007) J Phys D Appl Phys 42:049801CrossRefADSGoogle Scholar
  52. 52.
    Eisenberg GM (1943) Ind Eng Chem Anal Ed 15:327CrossRefGoogle Scholar
  53. 53.
    Bruggeman PJ, Schram D, Gonzlez MA, Rego R, Kong MG, Leys CA (2009) Plasma Sources Sci Technol 18:025017CrossRefADSGoogle Scholar
  54. 54.
    Lukes P, Clupek M, Babicky V, Sunka P (2008) Plasma Sources Sci Technol 17:024012CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemical and Biomedical Engineering, FAMU-FSU College of EngineeringFlorida State UniversityTallahasseeUSA

Personalised recommendations