Plasma Chemistry and Plasma Processing

, Volume 30, Issue 1, pp 121–140 | Cite as

Computational Analysis of a Double Nozzle Structure Plasma Cutting Torch

Original Paper


Double arcing phenomenon is a limit to increasing the capacity of the plasma cutting torch. In an attempt to enhance the ability of being invulnerable to the double arcing, a double nozzle structure is introduced in this paper. The reason why the double nozzle structure is less vulnerable to the double arcing phenomenon than single nozzle structure is explored. Double nozzle structure allows the longer nozzle which may cause stronger shock wave. In order to evaluate the influence of shock wave on the cutting ability, the influence of nozzle length on the double nozzle structure plasma arc is investigated. The modeling results show that the longer nozzle produces the stronger shock wave outside the nozzle outlet, but the energy flux and momentum flux become concentrated after the shock wave and increases with the increasing of nozzle length. So the double nozzle structure improves the cutting ability of the plasma torch and meanwhile be less vulnerable to the double arcing phenomenon.


Double nozzle structure Double arcing Cutting ability 



The authors would like to thank Prof. A. B. Murphy from CSIRO Materials Science and Engineering, Australia for his helpful advice and thermodynamic and transport property data for air plasma.


  1. 1.
    Nemchinsky VA, Severance WS (2006) What we know and what we do not know about plasma arc cutting. J Phys D Appl Phys 39:R423CrossRefADSGoogle Scholar
  2. 2.
    Bini R, Colosimo BM, Kutlu AE, Monno M (2008) Experimental study of the features of the kerf generated by a 200 A high tolerance plasma arc cutting system. J Mater Process Technol 196:345CrossRefGoogle Scholar
  3. 3.
    Hoult AP, Pashby IR, Chan K (1995) Fine plasma cutting of advanced aerospace materials. J Mater Process Technol 48:825CrossRefGoogle Scholar
  4. 4.
    Kirkpatrick Ian (1998) High definition plasma—an alternative to laser technology. Aircr Eng Aerosp Technol 70:215CrossRefGoogle Scholar
  5. 5.
    Ramakrishnan S, Rogozinski MW (1997) Properties of electric arc for metal cutting. J Phys D Appl Phys 30:636CrossRefADSGoogle Scholar
  6. 6.
    Pardo C, Gonzalez-Aguilar J, Rodriguez-Yunta A, Calderon MAG (1999) Spectroscopic analysis of an air plasma cutting torch. J Phys D Appl Phys 32:2181CrossRefADSGoogle Scholar
  7. 7.
    Freton P, Gonzalez JJ, Gleizes A, Peyret FC, Caillibotte G, Delzenne M (2002) Numerical and experimental study of a plasma cutting torch. J Phys D Appl Phys 35:115CrossRefADSGoogle Scholar
  8. 8.
    Freton P, Gonzalez JJ, Peyret FC, Glezes A (2003) Complementary experimental and theoretical approaches to the determination of the plasma characteristics in a cutting plasma torch. J Phys D Appl Phys 36:1269CrossRefADSGoogle Scholar
  9. 9.
    Girard L, Teulet Ph, Razafinimanana M, Gleizes A, Camy-Peyret F, Ballot E, Richard F (2006) Experimental study of an oxygen plasma cutting torch: I. Spectroscopic analysis of the plasma jet. J Phys D Appl Phys 39:1543CrossRefADSGoogle Scholar
  10. 10.
    Peters J, Heberlein J, Lindsay J (2007) Spectroscopic diagnostics in a highly constricted oxygen arc. J Phys D Appl Phys 40:3960CrossRefADSGoogle Scholar
  11. 11.
    Ramakrishnan S, Gershenzon M, Polivka F, Kearny TN, Rogozinsky MW (1997) Plasma generation for the plasma cutting process. IEEE Trans Plasma Sci 25:937CrossRefADSGoogle Scholar
  12. 12.
    Nemchinsky VA (1998) Plasma flow in a nozzle during plasma arc cutting. J Phys D Appl Phys 31:3102CrossRefADSGoogle Scholar
  13. 13.
    Gonzalez-Aguilar J, Pardo C, Rodriguez-Yunita A, Calderon MAG (1999) A theoretical study of a cutting air plasma torch. IEEE Trans Plasma Sci 27:264CrossRefADSGoogle Scholar
  14. 14.
    Patankar SV (1980) Numerical heat transfer and fluid flow. McGraw-Hill, New YorkMATHGoogle Scholar
  15. 15.
    Ghorui S, Heberlein JVR, Pfender E (2007) Non-equilibrium modelling of an oxygen-plasma cutting torch. J Phys D Appl Phys 40:1966CrossRefADSGoogle Scholar
  16. 16.
    Colombo V, Concetti A, Ghedini E, Dallavalle S, Vancini M (2008) Understanding plasma fluid dynamics inside plasma torches through advanced modeling. IEEE Trans Plasma Sci 36:389CrossRefADSGoogle Scholar
  17. 17.
    Zhou Q, Li H, Liu F, Guo S, Guo W, Xu P (2008) Effects of nozzle length and process parameters on highly constricted oxygen plasma cutting arc. Plasma Chem Plasma Process 28:729CrossRefGoogle Scholar
  18. 18.
    Peters J, Bartlett B, Lindsay J, Heberlein J (2008) Relating spectroscopic measurements in a plasma cutting torch to cutting performance. Plasma Chem Plasma Process 28:331CrossRefGoogle Scholar
  19. 19.
    Zhou Q, Li H, Xu X, Liu F, Guo S, Chang X, Guo W, Xu P (2009) Comparative study of turbulence models on highly constricted plasma cutting arc. J Phys D Appl Phys 42:015210CrossRefADSGoogle Scholar
  20. 20.
    Murphy AB (1995) Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas. Plasma Chem Plasma Process 15:279CrossRefMathSciNetGoogle Scholar
  21. 21.
    Murphy AB, Arundell CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas. Plasma Chem Plasma Process 14:451CrossRefGoogle Scholar
  22. 22.
    Naghizadeh-Kashani Y, Cressault Y, Gleizes A (2002) Net emission coefficient of air thermal plasmas. J Phys D Appl Phys 35:2925CrossRefGoogle Scholar
  23. 23.
    Trelles JP, Pfender E, Heberlein J (2006) Multiscale finite element modeling of arc dynamics in a DC plasma torch. Plasma Chem Plasma Process 26:557CrossRefGoogle Scholar
  24. 24.
    Gonzalez JJ, Freton P, Gleizes A (2002) Comparisons between two- and three-dimensional models: gas injection and arc attachment. J Phys D Appl Phys 35:3181CrossRefADSGoogle Scholar
  25. 25.
    Bini R, Monno M, Boulos MI (2006) Numerical and experimental study of transferred arcs in argon. J Phys D Appl Phys 39:3253CrossRefADSGoogle Scholar
  26. 26.
    Yakhot V, Orszag SA (1986) Renormalization-group analysis of turbulence. Phys Rev Lett 57:1722CrossRefADSGoogle Scholar
  27. 27.
    Fluent Inc (2001) FLUENT Users GuideGoogle Scholar
  28. 28.
    Benilov, Marotta A (1995) A model of the cathode region of atmospheric pressure arc. J Phys D Appl Phys 28:1869CrossRefADSGoogle Scholar
  29. 29.
    Nemchinsky VA, Showalter MS (2003) Cathode erosion rate in high-pressure arcs influence of swirling gas flow. J Phys D Appl Phys 36:704CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Shaofeng Guo
    • 1
  • Qianhong Zhou
    • 2
  • Wenkang Guo
    • 1
  • Ping Xu
    • 1
  1. 1.Plasma Laboratory, Institute of Modern PhysicsFudan UniversityShanghaiPeople’s Republic of China
  2. 2.Institute of Applied Physics and Computational MathematicsBeijingPeople’s Republic of China

Personalised recommendations