Advertisement

The Effect of Temperature on the Plasma-Catalytic Destruction of Propane and Propene: A Comparison with Thermal Catalysis

  • Tarryn Blackbeard
  • Vladimir Demidyuk
  • Sarah L. Hill
  • J. Christopher Whitehead
Original Paper

Abstract

A comparison has been made of plasma-catalysis with thermal-catalysis and plasma alone for the removal of low concentrations of propane and propene from synthetic air using a one-stage, catalyst-in discharge configuration. In all cases, plasma-catalysis produces better hydrocarbon destructions (~40%) than thermal catalysis at low temperatures. At higher temperatures, little difference is observed between plasma-catalytic and thermal-catalytic operation. Plasma operation by itself had a similar effectiveness to plasma-catalysis at low temperatures but was significantly lower (up to 50%) as the temperature was raised. By examining the form of the temperature dependence for the plasma-catalytic destruction processes, it is possible to phenomenologically distinguish two contributions to the destruction; one that is specifically plasma-induced and another (at higher temperatures) in which both plasma and thermal activation have similar mechanisms.

Keywords

Plasma catalysis Non-thermal plasma Atmospheric pressure Plasma Propane Propene 

References

  1. 1.
    Hammer T, Kappes T, Baldauf M (2004) Catal Today 89:5CrossRefGoogle Scholar
  2. 2.
    Kim H-H, Ogata A, Futamura S (2006) In: Bevy LB (ed) Trends in catalysis research, chap 1. Nova Science Publishers Inc., pp 1–50. ISBN: 1-59454-659-2Google Scholar
  3. 3.
    Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Appl Catal B Environ 78:324CrossRefGoogle Scholar
  4. 4.
    Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Environ Sci Technol 43:2216CrossRefGoogle Scholar
  5. 5.
    Harling AM, Wallis AE, Whitehead JC (2007) Plasma Process Polym 4:463CrossRefGoogle Scholar
  6. 6.
    Demidiouk V, Moon SI, Chae JO (2003) Catal Commun 4:51CrossRefGoogle Scholar
  7. 7.
    Kirkpatrick MJ, Finney WC, Locke BR (2004) Catal Today 89:117CrossRefGoogle Scholar
  8. 8.
    Gorry PA, Whitehead JC, Wu Jinhui (2007) Plasma Process Polym 4:556CrossRefGoogle Scholar
  9. 9.
    Kim H-H, Ogata A, Futamura S (2006) IEEE Trans Plasma Sci 34:984CrossRefADSGoogle Scholar
  10. 10.
    Sakayori K-I, Matsui Y, Abe H, Nakamura E, Kenmoku M, Hara T, Ishikawa D, Kokubu A, Hirota K-I, Ikeda T (1995) Jpn J Appl Phys 34:5443CrossRefADSGoogle Scholar
  11. 11.
    Sharma HB, Sarma HNK, Mansingh A (1999) J Mater Sci 34:1385CrossRefGoogle Scholar
  12. 12.
    Harling AM, Demidyuk V, Fischer SJ, Whitehead JC (2008) Appl Catal B 82:180CrossRefGoogle Scholar
  13. 13.
    Machli M, Boudouris C, Gaab S, Find J, Lemonidou AA, Lercher JA (2006) Catal Today 112:53CrossRefGoogle Scholar
  14. 14.
    Zhong SH, Sun HW, Wang XT, Shao HQ, Guo JB (2006) J Membr Sci 278:212CrossRefGoogle Scholar
  15. 15.
    Aubry O, Cormier JM (2009) Plasma Chem Plasma Process 29:13CrossRefGoogle Scholar
  16. 16.
    Demidyuk V, Whitehead JC (2007) Plasma Chem Plasma Process 27:85CrossRefGoogle Scholar
  17. 17.
    Harling AM, Kim HH, Futamura S, Whitehead JC (2007) J Phys Chem C 111:5090CrossRefGoogle Scholar
  18. 18.
    Guo YF, Ye DQ, Chen KF, He JC, Chen WL (2006) J Mol Catal A Chem 245:93CrossRefGoogle Scholar
  19. 19.
    Pribytkov AS, Baeva GN, Telegina NS, Tarasov AL, Stakheev AY, Tel’nov AV, Golubeva VN (2006) Kinet Catal 47:765CrossRefGoogle Scholar
  20. 20.
    Jun J, Kim JC, Shin JH, Lee KW, Baek YS (2004) Radiat Phys Chem 71:1095CrossRefADSGoogle Scholar
  21. 21.
    Demidyuk V, Hill SL, Whitehead JC (2008) J Phys Chem A 112:7862CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tarryn Blackbeard
    • 1
  • Vladimir Demidyuk
    • 1
  • Sarah L. Hill
    • 1
  • J. Christopher Whitehead
    • 1
  1. 1.The School of ChemistryThe University of ManchesterManchesterUK

Personalised recommendations