Plasma Chemistry and Plasma Processing

, Volume 28, Issue 6, pp 701–713 | Cite as

Application of Low-Pressure Plasma Pretreatment in Silk Fabric Degumming Process

  • Jia-Jie Long
  • Hong-Wei Wang
  • Tong-Qing Lu
  • Ren-Cheng Tang
  • Ya-wei Zhu
Original Paper


A novel and effective method was developed for raw silk fabric degumming with the application of low-pressure argon plasma in pretreatment combining a subsequent one-step mild wet-chemical process. The plasma parameters, such as argon pressure, discharge power and exposure time, were optimized according to degumming loss and the properties of fabric such as capillary rise, tensile strength, bending rigidity, etc. An optimized plasma pretreatment for raw silk fabric degumming was at 80 Pa of argon gas and 60 W glow discharge power for 5–10 min. The raw silk fabric and fibers pretreated by argon plasma were characterized by scanning electronic microscopy and X-ray powder diffraction. In comparison with a conventional degumming process, the proposed method achieved comparable degumming efficiency and properties of silk fabric, and it was more environmentally friendly by shortening the conventional wet-chemical treatment process, saving the dosage of degumming agents, water and energy.


Low pressure discharge Etching Degumming Sericin Silk fabric 


  1. 1.
    Freddi G, Mossotti R, Innocenti R (2003) J Biotechnol 106:101CrossRefGoogle Scholar
  2. 2.
    Yamada H, Nakao H, Takasu Y et al (2003) Mater Sci Eng Crystallogr 14:41CrossRefGoogle Scholar
  3. 3.
    Komatsu K (2003) The formation and structure of silk. In: Hojo N (ed) Chemical and structural characteristics of silk sericin. Shinkyo printing, Nagano, pp 379–415Google Scholar
  4. 4.
    Wu ZY, Feng ZZ et al (eds) (1992) Silk reeling chemistry, 2nd edn. Textile industrial, Beijing, pp 94–114Google Scholar
  5. 5.
    Jiang P, Liu H, Wang C et al (2006) Mater Lett 60:919CrossRefGoogle Scholar
  6. 6.
    Li R, Ye L, Mai YW (1997) Composites Part A Appl Sci Manu 28:73CrossRefGoogle Scholar
  7. 7.
    Vohrer U, Müller H, Oehr C (1998) Surf Coat Technol 98:1128CrossRefGoogle Scholar
  8. 8.
    Borcia G, Anderson CA, Brown NMD (2006) Surf Coat Technol 201:3074CrossRefGoogle Scholar
  9. 9.
    Yip J, Chan K, Sin KM et al (2002) J Mater Process Technol 123:5CrossRefGoogle Scholar
  10. 10.
    Vallon S, Drévillon B, Poncin-Epaillard F (1997) Appl Surf Sci 108:177CrossRefADSGoogle Scholar
  11. 11.
    Wertheimer MR, Fozza AC, Holländer A (1999) Nucl Instrum Method Phys Res Sect B Beam Interact Mater Atom 151:65ADSGoogle Scholar
  12. 12.
    Yuan LY, Chen CS, Shyu SS et al (1992) Composite Sci Technol 45:1CrossRefGoogle Scholar
  13. 13.
    Anand M, Cohen RE, Baddour RF (1981) Polymer 22:361CrossRefGoogle Scholar
  14. 14.
    Smiley RJ, Delgass WN (1993) J Mater Sci 28:3601CrossRefGoogle Scholar
  15. 15.
    Jeong BY, Hwang MS, Lee C et al (2001) Surf Coat Technol 135:279CrossRefGoogle Scholar
  16. 16.
    Chaivan P, Pasaja N, Boonyawan D et al (2005) Surf Coat Technol 193:356CrossRefGoogle Scholar
  17. 17.
    Canal C, Gaboriau F, Molina R et al (2007) Plasma Process Polym 4:445CrossRefGoogle Scholar
  18. 18.
    Matthews SR, McCord MG, Bourham MA (2005) Plasma Process Polym 2:702CrossRefGoogle Scholar
  19. 19.
    De Geyter N, Morent R, Leys C (2006) Surf Coat Technol 201:2460CrossRefGoogle Scholar
  20. 20.
    Poll HU, Schladitz U, Schreiter S (2001) Surf Coat Technol 142–144:489CrossRefGoogle Scholar
  21. 21.
    Wang CX, Ren Y, Qiu YP (2007) Surf Coat Technol 202:77CrossRefADSGoogle Scholar
  22. 22.
    Ferrero F (2003) Polymer Test 22:571CrossRefGoogle Scholar
  23. 23.
    Raffaele-Addamo A, Riccardi C, Selli E, Barni R et al (2003) Surf Coat Technol 174–175:886CrossRefGoogle Scholar
  24. 24.
    Garg S, Hurren C, Kaynak A (2007) Synthetic Met 157:41CrossRefGoogle Scholar
  25. 25.
    Hossain MM, Herrmann AS, Hegemann D (2007) Plasma Process Polym 4:1068CrossRefGoogle Scholar
  26. 26.
    Hossain MM, Hegemann D, Fortunato G et al (2007) Plasma Process Polym 4:471CrossRefGoogle Scholar
  27. 27.
    Hossain MM, Herrmann AS, Hegemann D (2007) Plasma Process Polym 4:135CrossRefGoogle Scholar
  28. 28.
    Hossain MM, Herrmann AS, Hegemann D (2006) Plasma Process Polym 3:299CrossRefGoogle Scholar
  29. 29.
    Osenberg F, Theirich D, Decker A et al (1999) Surf Coat Technol 116–119:808CrossRefGoogle Scholar
  30. 30.
    Canal C, Gaboriau F, Ricard A et al (2007) Plasma Chem Plasma Process 27:404CrossRefGoogle Scholar
  31. 31.
    Wong KK (2000) Text Res J 70:886CrossRefGoogle Scholar
  32. 32.
    Da Y, Griesser HJ, Mau AWH et al (1991) Polymer 32:1126CrossRefGoogle Scholar
  33. 33.
    Shahidi S, Ghoranneviss M, Moazzenchi B et al (2007) Plasma Process Polym 4:1098CrossRefGoogle Scholar
  34. 34.
    Castelvetro V, Fatarea E, Corsi L et al (2005) Plasma Process Polym 3:48CrossRefGoogle Scholar
  35. 35.
    Demura M, Takekawa T, Asakura T et al (1992) Biomaterials 13:276CrossRefGoogle Scholar
  36. 36.
    Liu YC, Lu DN (2006) Plasma Chem Plasma Process 26:119CrossRefGoogle Scholar
  37. 37.
    Bhat NV, Upadhyay DJ (2003) Plasma Chem Plasma Process 23:389CrossRefGoogle Scholar
  38. 38.
    Textiles-Capillary rise measurement method—strip method (1999) In: China textile criteria of FZ/T01071-1999, Criteria Press of China, BeijingGoogle Scholar
  39. 39.
    Textiles-Tensile properties of fabrics—Part 1: determination of breaking force and elongation at breaking force—strip method (1997) In: China textile criteria of GB/T3923.1-1997, Criteria Press of China, BeijingGoogle Scholar
  40. 40.
    Textiles-Determination of bending length of fabrics (2001) In: China textile criteria of GB/T 1838-2001, Criteria Press of China, BeijingGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jia-Jie Long
    • 1
  • Hong-Wei Wang
    • 1
  • Tong-Qing Lu
    • 1
  • Ren-Cheng Tang
    • 1
  • Ya-wei Zhu
    • 1
  1. 1.College of Textile and Clothing EngineeringSoochow UniversitySuzhouPeople’s Republic of China

Personalised recommendations