Advertisement

Plasma Chemistry and Plasma Processing

, Volume 28, Issue 4, pp 495–509 | Cite as

Role of the Temperature on the Interaction Mechanisms Between Argon–Oxygen Post-Discharge and Hexatriacontane

  • M. Mafra
  • T. Belmonte
  • F. Poncin-Epaillard
  • A. S. da Silva Sobrinho
  • A. Maliska
Original Paper

Abstract

Interactions between a late Ar–O2 post-discharge and the hexatriacontane (HTC), a long-chain alkane, are shown to depend on the thermal flux released by surface reactions that makes the temperatures of the sample and the gas phase drift in an uncontrolled manner as a function of time. Since the transformations of the hexatriacontane depend on these temperatures, the initial value of the temperature and that of the oxygen concentration are key parameters that control the whole transformation process. A thorough description of the different steps of the transformation undergone by the hexatriacontane is given, explaining the origins of the limitation of the material etching. Pulsing the plasma shows that optimizing the etching process requires to work at low temperature, a too strong heating of the sample leading to functionalization and reticulation that limit the etching of the HTC.

Keywords

Hexatriacontane Plasma cleaning Post-discharge 

References

  1. 1.
    Baránková H, Bardos L (2006) Vacuum 80(7):688–692CrossRefGoogle Scholar
  2. 2.
    Hsieh JH, Li C (2006) Thin Solid Films 504(1–2):101–103CrossRefADSGoogle Scholar
  3. 3.
    Gupta P, Tenhundfeld G, Daigle EO, Ryabkov D (2007) Surf Coat Technol 201(21):8746–8760CrossRefGoogle Scholar
  4. 4.
    Ferreira JA, Tabarés FL, Tafalla D (2007) J Nucl Mater 363–365:888–892CrossRefGoogle Scholar
  5. 5.
    González-Posada F, Bardwell JA, Moisa S, Haffouz S, Tang H, Braña AF, Muñoz E (2007) Appl Surf Sci 253(14):6185–6190CrossRefADSGoogle Scholar
  6. 6.
    Belkind A, Zarrabian S, Engle F (1996) Metal Finish 94(7):19–22CrossRefGoogle Scholar
  7. 7.
    Belkind A, Li H, Clow H, Jansen F (1995) Surf Coat Technol 76–77(2):738–743Google Scholar
  8. 8.
    Krüger P, Knes R, Friedrich J (1999) Surf Coat Technol 112(1–3):240–244CrossRefGoogle Scholar
  9. 9.
    Santos MA, Silva HRT, Maliska AM, Klein AN, Muzart JLR (2005) Surf Coat Technol 195(2–3):198–203CrossRefGoogle Scholar
  10. 10.
    Lefèvre L, Belmonte T, Czerwiec T, Ricard A, Michel H (2000) Appl Surf Sci 153(2–3):85–95CrossRefADSGoogle Scholar
  11. 11.
    Hody V, Belmonte T, Pintassilgo C, Poncin-Epaillard F, Czerwiec T, Henrion G, Segui Y, Loureiro J (2006) Plasma Chem Plasma Proc 26(3):251–266CrossRefGoogle Scholar
  12. 12.
    Hody V, Belmonte T, Czerwiec T, Henrion G, Thiébaut JM (2006) Thin Solid Films 506–507:212–216CrossRefGoogle Scholar
  13. 13.
    Belmonte T, Pintassilgo C, Czerwiec T, Henrion G, Hody V, Thiébaut JM, Loureiro J (2005) Surf Coat Technol 200(1–4):26–30CrossRefGoogle Scholar
  14. 14.
    Murillo R, Poncin-Epaillard F, Segui Y (2007) Eur Phys J Appl Phys 37:299–305CrossRefADSGoogle Scholar
  15. 15.
    Fozza AC, Bergeron A, Klemberg-Sapieha JE, Wertheimer MR (1999) In: Lee WW, d’Agostino R, Wertheimer MR (eds) Plasma deposition and treatment of polymers symposium, pp 109–114Google Scholar
  16. 16.
    Fozza AC, Roch J, Klemberg-Sapieha JE, Kruse A, Holländer A, Wertheimer MR (1997) Nucl Instrum Methods Phys Res Sect B 131–1/4:205–210CrossRefADSGoogle Scholar
  17. 17.
    Wertheimer MR, Fozza AC, Holländer A (1999) Nucl Instrum Methods Phys Res Sect B 151:65–75CrossRefADSGoogle Scholar
  18. 18.
    Normand F, Granier A, Leprince P, Marec J, Shi MK, Clouet F (1995) Plasma Chem Plasma Proc 15(2):173–197CrossRefGoogle Scholar
  19. 19.
    Clouet F, Shi MK, Prat R, Holl Y, Marie P, Léonard D, De Puydt Y, Bertrand P, Dewez J-L, Doren A (1994) J Adhes Sci Technol 8–4:329–361CrossRefGoogle Scholar
  20. 20.
    Collart EJH, Baggerman JAG, Visser RJ (1995) J Appl Phys 78(1):47–54CrossRefADSGoogle Scholar
  21. 21.
    Eggito FD (1990) Pure Appl Chem 62(9):1699–1708CrossRefGoogle Scholar
  22. 22.
    Eggito FD, Matienzo LJ (1994) IBM J Res Develop 38(4):423–439CrossRefGoogle Scholar
  23. 23.
    Eggito FD, Emmi F, Horwath RS, Vukanovic V (1985) J Vac Sci Technol B 3(3):893–904CrossRefGoogle Scholar
  24. 24.
    Leonard D, Bertrand P, Scheuer A, Prat R, Hommet J, Le-Moigne J, Deville JP (1996) J Adhes Sci Technol 10–11:1165–1197CrossRefGoogle Scholar
  25. 25.
    SCA, USR–59, CNRS. http://www.sca.cnrs.fr/
  26. 26.
    Mafra M, Belmonte T, da Silva Sobrinho AS, Maliska A, Cvelbar U, Poncin-Epaillard F (2008) Key Eng Mater 373–374:421–425CrossRefGoogle Scholar
  27. 27.
    Bellamy LJ (1975) The Infra-red spectra of complex molecules, 3rd edn. Chapman and Hall LtdGoogle Scholar
  28. 28.
    Medhekar VS, Degree of Master of Science in Chemical Engineering (2001) Worcester Polytechnic Institute. See also Medhekar V, Thompson RW, Wang A, Grant McGimpsey W (2002) J Appl Polym Sci 87(5):814–826; Alam TM, Celina M, Collier JP, Currier BH, Currier JH, Jackson SK, Kuethe DO, Timmins GS (2004) J Polym Sci Part A: Polym Chem 42(23):5929–5941Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. Mafra
    • 1
    • 2
  • T. Belmonte
    • 1
  • F. Poncin-Epaillard
    • 3
  • A. S. da Silva Sobrinho
    • 2
  • A. Maliska
    • 2
  1. 1.Laboratoire de Science et Génie des SurfacesNancy-Université, CNRSNancyFrance
  2. 2.Departamento de Engenharia Mecânica, Laboratório de MateriaisUniversidade Federal de Santa CatarinaFlorianopolisBrazil
  3. 3.Laboratoire Polymères Colloïdes InterfacesUMR CNRS 6120, Université du MaineLe MansFrance

Personalised recommendations