Plasma Chemistry and Plasma Processing

, Volume 28, Issue 4, pp 535–551 | Cite as

Influence of Plasma Treatments on the Hemocompatibility of PET and PET + TiO2 Films

  • Ionut Topala
  • Nicoleta Dumitrascu
  • Valentin Pohoata
Original Paper


A dielectric barrier discharge (DBD) in helium was used to ameliorate the interface between the blood and the surface of polymeric implants: polyethylene terephthalate (PET) and PET with titanium oxide (PET + TiO2). A higher crystallinity degree was found for the DBD treated samples. The wettability of polymers was improved after the treatment. The chemical composition, analyzed by infrared spectroscopy was preserved during the DBD treatment. The surface modifications have been correlated with polymers hemocompatibility. Concerning the polymer surface–blood interaction, the treatment induced a decrease of the interfacial tension between the blood components and the treated surfaces. The in vitro tests of hemocompatibility showed no perturbation in the blood composition when the polymer samples are present in the blood volume. An interesting result is related to the whole blood clotting time that shows a dramatic increase on the treated surfaces. Moreover, the coagulation kinetics on the treated surfaces is modified.


Blood–material interface Dielectric barrier discharge Hemocompatibility Polymers Surface modification 



The authors thank PhD Cristina Morariu, Hematology Laboratory, Military Hospital, Iasi, Romania, for its help with the hemocompatibility tests. This work was supported by the Romanian National University Research Council (CNCSIS) under Grant 1461/2005–2006.


  1. 1.
    Mao C, Qiu Y, Sang H, Mei H, Zhu A, Shen J, Lin S (2004) Adv Colloid Interface Sci 110(1–2):5CrossRefGoogle Scholar
  2. 2.
    Chu PK, Chen JY, Wang LP, Huang N (2002) Mater Sci Eng R 36(5–6):143CrossRefGoogle Scholar
  3. 3.
    Huang N, Yang P, Leng YX, Wang J, Sun H, Chen JY, Wan GJ (2004) Surf Coat Technol 186(1–2):218CrossRefGoogle Scholar
  4. 4.
    Fridman G, Peddinghaus M, Balasubramanian M, Ayan H, Fridman A, Gutsol A, Brooks A (2006) Plasma Chem Plasma Process 26(4):425CrossRefGoogle Scholar
  5. 5.
    Schroder K, Meyer-Plath A, Keller D, Besch W, Babucke G, Ohl A (2001) Contrib Plasma Phys 41(6):562CrossRefGoogle Scholar
  6. 6.
    Wang J, Pan CJ, Huang N, Sun H, Yang P, Leng YX, Chen JY, Wan GJ, Chu PK (2005) Surf Coat Technol 196(1–3):307CrossRefGoogle Scholar
  7. 7.
    Okazaki K, Nozaki T (2002) Pure Appl Chem 74(3):447CrossRefGoogle Scholar
  8. 8.
    Dumitrascu N, Topala I, Popa G (2005) IEEE Trans Plasma Sci 33(5):1710CrossRefADSGoogle Scholar
  9. 9.
    Visser SA, Hergenrother RW, Cooper SL (1996) In: Ratner BD, Hoffman AS, Schoen FS, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Academic Press, San Diego, p 50Google Scholar
  10. 10.
    Pu FR, Williams RL, Markkula TK, Hunt JA (2002) Biomaterials 23(11):2411CrossRefGoogle Scholar
  11. 11.
    Sanders JE, Bale SD, Neumann T (2002) J Biomed Mater Res 62(2):222CrossRefGoogle Scholar
  12. 12.
    Zhang F, Zheng Z, Chen Y, Liu X, Chen A, Jiang Z (1998) J Biomed Mater Res 42(1):128CrossRefGoogle Scholar
  13. 13.
    Strohm H, Sgraja M, Bertling J, Lobmann P (2003) J Mat Sci 38(8):1605CrossRefGoogle Scholar
  14. 14.
    Pena J, Vallet-Regi M, San Roman J (1997) J Biomed Mater Res 35(1):129CrossRefGoogle Scholar
  15. 15.
    Clark DT, Dilks A (1978) J Polym Sci Polym Chem Ed 16:911CrossRefGoogle Scholar
  16. 16.
    Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York, p 184Google Scholar
  17. 17.
    Kwok SCH, Wang J, Chu PK (2005) Diamond Relat Mater 14(1):78CrossRefGoogle Scholar
  18. 18.
    Agathopoulos S, Nikolopoulos P (1995) J Biomed Mater Res 29(4):421CrossRefGoogle Scholar
  19. 19.
    Alexander LE (1969) X-ray diffraction methods in polymer science. Wiley Interscience, New York, p 335Google Scholar
  20. 20.
    Cole KC, Ajji A, Pellerin E (2002) Macromolecules 35(3):770CrossRefGoogle Scholar
  21. 21.
    Koenig JL (1999) Spectroscopy of polymers. Elsevier, New York, p 90Google Scholar
  22. 22.
    Cenni E, Granchi D, Ciapetti G, Stea S, Verri E, Gamberini S, Gori A, Pizzoferrato A, Zucchelli P (1997) J Mater Sci Mater Med 8:771CrossRefGoogle Scholar
  23. 23.
    Balakrishnan B, Kumar DS, Yoshida Y, Jayakrishnan A (2005) Biomaterials 26(17):3495CrossRefGoogle Scholar
  24. 24.
    Fechine GJM, Souto-Maior RM, Rabello MS (2002) J Mater Sci 37(23):4979CrossRefGoogle Scholar
  25. 25.
    Durell M, Macdonald JE, Trolley D, Wehrum A, Jukes PC, Jones RAL, Walker CJ, Brown S (2002) Europhys Lett 58(6):844CrossRefADSGoogle Scholar
  26. 26.
    Lippert T (2005) Plasma Proc Polym 2(7):525CrossRefGoogle Scholar
  27. 27.
    Chan CM, Ko TM, Hiraoka H (1996) Surf Sci Rep 24(1–2):1CrossRefGoogle Scholar
  28. 28.
    Ruckenstein E, Gourisankar SV (1986) Biomaterials 7(6):403CrossRefGoogle Scholar
  29. 29.
    Li ZF, Ruckenstein E (2004) J Colloid Interface Sci 269(1):62CrossRefGoogle Scholar
  30. 30.
    Chen JY, Leng YX, Tian XB, Wang LP, Huang N, Chu PK, Yang P (2002) Biomaterials 23(12):2545CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ionut Topala
    • 1
  • Nicoleta Dumitrascu
    • 1
  • Valentin Pohoata
    • 1
  1. 1.Plasma Physics Laboratory, Faculty of PhysicsAlexandru Ioan Cuza UniversityIasiRomania

Personalised recommendations