Plasma Chemistry and Plasma Processing

, Volume 28, Issue 4, pp 405–414 | Cite as

Synthesis of Ammonia Using CH4/N2 Plasmas Based on Micro-Gap Discharge under Environmentally Friendly Condition

  • Mindong Bai
  • Zhitao Zhang
  • Mindi Bai
  • Xiyao Bai
  • Honghui Gao
Original Paper


The synthesis of ammonia has been studied in methane-nitrogen plasmas using a micro-gap discharge under an environmentally friendly condition. The effects of some parameters such as the specific input energy, the discharge gap, the volume ratio of CH4/N2, the residence time, and the gas temperature on the yield of NH3 and conversion rate of CH4 are discussed in the paper. The results show that the highest yield of NH3 is 8000 ppm for a residence time of 1.6 s. In addition, the yield and generating rate of H2 are 9.1% (v/v) and 1879.8 μmol/min, respectively. Therefore, the micro-gap discharge is an efficient method for NH3 synthesis and H2 generation from CH4.


Concentration of synthesized NH3 Conversion rate of CH4 Micro-gap discharge Environmentally friendly condition 


  1. 1.
    Oumghar A, Legrand JC, Diamy AM (1994) A kinetic study of methane conversion by a dinitrogen microwave plasma. Plasma Chem Plasma Process 14(3):229–249CrossRefGoogle Scholar
  2. 2.
    Oumghar A, Legrand JC, Diamy AM, Turillon N (1995) Methane conversion by an air microwave plasma. Plasma Chem Plasma Process 15(1):87–107CrossRefGoogle Scholar
  3. 3.
    Legrand JC, Diamy AM, Hrach R, Oumghar A (1999) Mechanisms of methane decomposition in nitrogen afterglow plasma. Vacuum 52:27–32CrossRefGoogle Scholar
  4. 4.
    Uyama H, Matsumoto O (1989) Synthesis of ammonia in high-frequency discharge. Plasma Chem Plasma Process 9(1):13–24CrossRefGoogle Scholar
  5. 5.
    Amorim J, Baravian G, Ricard A (1995) Production of N, H, and NH active species in N2–H2 dc flowing discharges. Plasma Chem Plasma Process 15(4):721–731CrossRefGoogle Scholar
  6. 6.
    Sugiyama K, Akazawa K, Oshima M et al. (1986) Ammonia synthesis by means of plasma over MgO catalyst. Plasma Chem Plasma Process 6(2):179–193Google Scholar
  7. 7.
    Uyama H, Nakamura T, Tanaka S, Matsumoto O (1993) Catalytic effect of iron wires on the syntheses of ammonia and hydrazine in a radio-frequency discharge. Plasma Chem Plasma Process 13(1):117–131CrossRefGoogle Scholar
  8. 8.
    Tanaka S, Uyama H, Matsumoto O (1994) Synergistic effects of catalysts and plasmas on the synthesis of ammonia and hydrazine. Plasma Chem Plasma Process 14(4):491–505CrossRefGoogle Scholar
  9. 9.
    Kabashima H, Einaga H, Futamura S (2003) Hydrogen generation from water, methane, and methanol with nonthermal plasma. IEEE Trans Ind Appl 39(2):340–345CrossRefGoogle Scholar
  10. 10.
    Chen X, Marquez M, Rozak J, Marun C, Luo J, Suib SL, Hayashi Y, Matsumoto H (1998) H2O splitting in tubular plasma reactor. J Catal 178:372–377CrossRefGoogle Scholar
  11. 11.
    Bai MD, Bai XY, Zhang ZT (2000) Synthesis of ammonia in a strong electric field discharge at ambient pressure. Plasma Chem Plasma Process 20(4):511–520CrossRefMathSciNetGoogle Scholar
  12. 12.
    Bai MD, Zhang ZT, Bai XY, Wang N (2003) Plasma synthesis of ammonia with a microgap dielectric barrier discharge at ambient pressure. IEEE Trans Plasma Sci 31(6):1285–1291CrossRefADSGoogle Scholar
  13. 13.
    Bai XY, Zhang ZT, Han H, Bai MD (2002) Research situation and progress of non-equilibrium plasma chemistry. Chinese Sci Bull 47(7):529–530CrossRefGoogle Scholar
  14. 14.
    Horton B (1999) Green chemistry puts down roots. Nature 400(19):797–799CrossRefADSGoogle Scholar
  15. 15.
    Leitner W (2000) Green chemistry: designed to dissolve. Nature 405(11):129–130CrossRefGoogle Scholar
  16. 16.
    Yoon SF, Tan KH, Rusli H, Ahn J (2002) Modeling and analysis of hydrogen-methane plasma in electron cyclotron resonance chemical vapor deposition of diamond-like carbon. J Appl Phys 91(1):40–47CrossRefADSGoogle Scholar
  17. 17.
    D3382-95 Standard test method for measurement of energy and integrated charge transfer due to partial discharge (Corona) using bridge techniques. In: 2001 Book of Standards, Vol. 10.02Google Scholar
  18. 18.
    Zhang ZT, Xian YZ, Bai MD, Zhao YH, Dong KB (2003) Electrical characterization of dielectric barrier discharge plasma using the charge-voltage figure. J Physics (in Chinese) 32(7):458–462Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mindong Bai
    • 1
  • Zhitao Zhang
    • 1
  • Mindi Bai
    • 1
  • Xiyao Bai
    • 1
  • Honghui Gao
    • 1
  1. 1.Key Laboratory of Strong Electric-Field Ionization Discharge of Liaoning Province, Department of PhysicsDalian Maritime UniversityDalianPeople’s Republic of China

Personalised recommendations