Plasma Chemistry and Plasma Processing

, Volume 27, Issue 6, pp 799–811 | Cite as

Surface Modification of Fine Particles with a SnO2 Film by Using a Polyhedral-Barrel Sputtering System

  • Takayuki Abe
  • Shingo Higashide
  • Mitsuhiro Inoue
  • Satoshi Akamaru
Original Papers


Fine particles were modified with a thin film of SnO2 by using a barrel sputtering system that is a dry process. The conditions for the preparation of SnO2 were studied by reactive sputtering onto a glass plate substrate. The optimal conditions for the preparation of tetragonal SnO2 were identified as 60% partial oxygen pressure and 1.0 Pa total gas pressure with the substrate at room temperature. Under the optimized conditions, the surfaces of Al flake particles were modified with a thin film of SnO2. XRD and SEM/EDS analysis of the prepared samples showed that the Al particle surfaces were uniformly modified by a thin film of SnO2 in all cases. The film thicknesses were 80, 130, and 180 nm at RF outputs of 195, 350, and 490 W. These measured thicknesses coincided with the values estimated from the interference colors of the samples.


Sputtering Coatings Oxides Optical reflectivity Powder processing 



This work was partially supported by a Grant-in-aid for Science Research from Ministry of Education, Science, Sports and Culture in Japan.


  1. 1.
    Iinoya K, Gotho K, Hogashitani K (eds) (1991) Powder technology handbook, Mercel Dekker IncGoogle Scholar
  2. 2.
    Cairns JA, Nelson RS, Barnfield RW (1976) GB Patent 1455248Google Scholar
  3. 3.
    Schilf HW, Heuberger M, Frey F, Jehn HA, Telle R, Raub CJ (1991) Mat Sci Eng A 139:185CrossRefGoogle Scholar
  4. 4.
    Muller HR, Ensinger W, Frech G, Wolf GK (1994) Nucl Instr and Meth B 89:357CrossRefADSGoogle Scholar
  5. 5.
    Ensinger W (1999) Nucl Instr and Meth B 148:17CrossRefADSGoogle Scholar
  6. 6.
    Ensinger W, Muller HR (1998) Nucl Instr and Meth B 141:693CrossRefADSGoogle Scholar
  7. 7.
    Ensinger W, Muller HR (2003) Surf Coat Technol 163–164:281CrossRefGoogle Scholar
  8. 8.
    Takeshima E (1996) JP Patent 02-153068Google Scholar
  9. 9.
    Takeshima E, Gonoi K, Sirokura T, Kawakami H (1996) JP Patent 08-081753Google Scholar
  10. 10.
    Hara M, Hatano Y, Abe T, Watanabe K, Naitoh T, Ikeno S, Honda Y (2003) J Nucl Mater 320:265CrossRefADSGoogle Scholar
  11. 11.
    Abe T, Akamaru S, Watanabe K (2004) J Alloys Compd 377:194CrossRefGoogle Scholar
  12. 12.
    Abe T, Akamaru S, Watanabe K, Honda Y (2005) J Alloys Compd 402:227CrossRefGoogle Scholar
  13. 13.
    Fitzpatrick LE (ed) (1992) Encyclopedia of materials characterization: Surface, interface, thin films, Butterworth-HeinemannGoogle Scholar
  14. 14.
    Snyders R, Wautelet M, Gouttebaron R, Dauchot JP, Hecq M (2001) Surf Coat Tech 142–144:187CrossRefGoogle Scholar
  15. 15.
    Snyders R, Wautelet M, Gouttebaron R, Dauchot JP, Hecq M (2003) Thin Solid Films 423:125CrossRefGoogle Scholar
  16. 16.
    Snyders R, Gouttebaron R, Dauchot JP, Hecq M (2005) Surf Coat Tech 200:448CrossRefGoogle Scholar
  17. 17.
    Chung JH, Choe YS, Kim DS (1999) Thin Solid Films 349:126CrossRefGoogle Scholar
  18. 18.
    Ruske M, Brauer G, Pistner J, Pfafflin U, Szczyrbowski J (1999) Thin Solid Films 351:146CrossRefGoogle Scholar
  19. 19.
    Liu PY, Chen JF, Sun WD (2004) Vacuum 76:7CrossRefGoogle Scholar
  20. 20.
    Zhou ZB, Cui RQ, Pang QJ, Wang YD, Meng FY, Yu XB (2001) Appl Surf Sci 172:245CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Takayuki Abe
    • 1
  • Shingo Higashide
    • 1
  • Mitsuhiro Inoue
    • 1
  • Satoshi Akamaru
    • 1
  1. 1.Hydrogen Isotope Research CenterUniversity of ToyamaToyamaJapan

Personalised recommendations