Advertisement

Plasma Chemistry and Plasma Processing

, Volume 25, Issue 4, pp 303–317 | Cite as

Effect of Ion Energy on Structure and Composition of Cathodic Arc Deposited Alumina Thin Films

  • Johanna Rosén
  • Stanislav Mráz
  • Ulrich Kreissig
  • Denis Music
  • Jochen M. Schneider
Article

Abstract

The effect of energy supplied to the growing alumina film on the composition and structure has been investigated by varying substrate temperature and substrate bias potential. The constitution and composition were studied by X-ray diffraction and elastic recoil detection analysis, respectively. Increasing the substrate bias potential from −50 to −100  V caused the amorphous or weakly crystalline films to evolve into stoichiometric, crystalline films with a mixture of the α- and γ-phase above 700 oC, and γ-phase dominated films at temperatures as low as 200 oC. All films had a grain size of <10 nm. The combined constitution and grain size data is consistent with previous work stating that γ-alumina is thermodynamically stable at grain sizes <12 nm [McHale et al., Science 277, 788 (1997)]. In order to correlate phase formation with synthesis conditions, the plasma chemistry and ion energy distributions were measured at synthesis conditions. These results indicate that for a substrate bias potential of −50 V, ion energies in excess of 100 eV are attained, both from a high energy tail and the accelerated ions with charge >1. These results are of importance for an increased understanding of the evolution of film composition and microstructure, also providing a pathway to γ-alumina growth at temperatures as low as 200 o C.

Keywords

Alumina ion energy plasma chemistry composition microstructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schneider, J. M., Sproul, W. D., Voevodin, A. A., Matthews, A. 1997J. Vac. Sci. Technol. A151084CrossRefGoogle Scholar
  2. 2.
    Zhu, S., Wang, F., Lou, H., Wu, W. 1995Surf. Coat Technol.719CrossRefGoogle Scholar
  3. 3.
    Serra, E., Benamati, G., Ogorodnikova, O. V. 1998J. Nucl. Mater.255105CrossRefGoogle Scholar
  4. 4.
    Schütze, A., Quinto, D.T. 2003Surf Coat Technol.162174CrossRefGoogle Scholar
  5. 5.
    Täschner, C., Ljungberg, B., Alfredsson, V., Endler, I., Leonhardt, A. 1998Surf Coat Technol108-109257CrossRefGoogle Scholar
  6. 6.
    Prengel, G. H., Heinrich, W., Roder, G., Wendt, K. H. 1994Surf Coat Technol.68-69217CrossRefGoogle Scholar
  7. 7.
    Edelstahl Handbuch (Böhler Edelstahl GmbH, Kapfenberg, Germany, 1998)Google Scholar
  8. 8.
    Zywitzki, O., Hoetzsch, G., Fietzke, F., Goedicke, K. 1996Surf. Coat Technol.82169CrossRefGoogle Scholar
  9. 9.
    Zywitzki, O., Hoetzsch, G. 1996Surf Coat Technol.86-87640CrossRefGoogle Scholar
  10. 10.
    Yamada-Takamura, Y., Koch, F., Maier, H., Bolt, H. 2001Surf Coat Technol.142-144260CrossRefGoogle Scholar
  11. 11.
    Brill, R., Koch, F., Mazurelle, J., Levchuk, D., Balden, M., Yamada-Takamura, Y., Maier, H., Bolt, H. 2003Surf Coat Technol.174-175606CrossRefGoogle Scholar
  12. 12.
    Kyrylov, O., Kurapov, D., Schneider, J. M. 2005Appl. Phys. A.801657CrossRefGoogle Scholar
  13. 13.
    Andersson, J.M., Czigány, Z., Jin, P., Helmersson, U. 2004J. Vac. Sci. Technol. A.22117CrossRefGoogle Scholar
  14. 14.
    Ruppi, S., Larsson, A. 2001Thin Solid Films38850CrossRefGoogle Scholar
  15. 15.
    Larsson, A., Ruppi, S. 2001Int. J. Refract Hard Mater.19515CrossRefGoogle Scholar
  16. 16.
    Fietzke, F., Goedicke, K., Hempel, W. 1996Surf. Coat Technol.86657CrossRefGoogle Scholar
  17. 17.
    Zywitzki, O., Hoetzsch, G. 1997Surf Coat Technol.94–95303CrossRefGoogle Scholar
  18. 18.
    Cremer, R., Witthaut, M., Neuschütz, D., Erkens, G., Leyendecker, T., Feldhege, M. 1999Surf Coat Technol.120-121213CrossRefGoogle Scholar
  19. 19.
    Li, Q., Yu, Y.-H., Bhatia, C.S., Marks, L.D., Lee, S.C., Chung, Y.W. 2000J. Vac. Sci. Technol. A.182333CrossRefGoogle Scholar
  20. 20.
    Kreissig, U., Grigull, S., Lange, K., Nitzsche, P., Schmidt, B. 1998Nucl. Instrum. Meth. B136674Google Scholar
  21. 21.
    Schneider, J.M., Anders, A., Hjörvarsson, B., Petrov, I., Macák, K., Helmersson, U., Sundgren, J.-E. 1999Appl. Phys. Lett.74200CrossRefGoogle Scholar
  22. 22.
    Schneider, J. M., Larsson, K., Lu, J., Olsson, E., Hjörvarsson, B. 2002Appl. Phys. Lett.801144CrossRefGoogle Scholar
  23. 23.
    Castañeda, S. I., Montero, I., Ripalda, J. M., Días, N., Galán, L., Rueda, F. 1999J Appl Phys.858415CrossRefGoogle Scholar
  24. 24.
    Joint Committee on Powder Diffraction Standards (JCPDS).Google Scholar
  25. 25.
    Schneider, J. M., Anders, A., Yushkov, G. Y. 2001Appl. Phys. Lett.78150CrossRefGoogle Scholar
  26. 26.
    E. Oks and G. Yushkov, 17th International Symposium on Discharges and Electrical Insulation in Vacuum, Berkeley (1996).Google Scholar
  27. 27.
    Jin, P., Xu, G., Tazawa, M., Yoshimura, K., Music, D., Alami, J., Helmersson, U. 2002J. Vac. Sci. Technol. A.202134CrossRefGoogle Scholar
  28. 28.
    Jin, P., Nakao, S., Wang, S. X., Wang, L. M. 2003Appl. Phys. Lett.821024CrossRefGoogle Scholar
  29. 29.
    Kurapov, D., Schneider, J. M. 2004Steel Res. Int.75577Google Scholar
  30. 30.
    Movchan, B. A., Demchishin, A. V. 1969Phys. Met Metallogr.2883Google Scholar
  31. 31.
    Thornton, J. A. 1974J. Vac. Sci. Technol.11666CrossRefGoogle Scholar
  32. 32.
    Savisalo, T., Lewis, D. B., Hovsepian, P. Eh., Münz, W.-D. 2004Thin Solid Films46094CrossRefGoogle Scholar
  33. 33.
    Callister, W. D. 2000Materials Science and Engineering An Introduction5John Wiley & SonsNew YorkGoogle Scholar
  34. 34.
    Cullity, B. D. 1978Elements of X-Ray DiffractionAddison-WesleyMenlo Park, CaliforniaGoogle Scholar
  35. 35.
    McHale, J. M., Auroux, A., Perrotta, A. J., Navrotsky, A. 1997Science277788CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Johanna Rosén
    • 1
  • Stanislav Mráz
    • 1
  • Ulrich Kreissig
    • 2
  • Denis Music
    • 1
  • Jochen M. Schneider
    • 1
  1. 1.Materials ChemistryRWTH AachenAachenGermany
  2. 2.Institute of Ion Beam Physics and Materials ResearchResearch Center RossendorfDresdenGermany

Personalised recommendations