Skip to main content

Advertisement

Log in

Effect of Ion Energy on Structure and Composition of Cathodic Arc Deposited Alumina Thin Films

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The effect of energy supplied to the growing alumina film on the composition and structure has been investigated by varying substrate temperature and substrate bias potential. The constitution and composition were studied by X-ray diffraction and elastic recoil detection analysis, respectively. Increasing the substrate bias potential from −50 to −100  V caused the amorphous or weakly crystalline films to evolve into stoichiometric, crystalline films with a mixture of the α- and γ-phase above 700 oC, and γ-phase dominated films at temperatures as low as 200 oC. All films had a grain size of <10 nm. The combined constitution and grain size data is consistent with previous work stating that γ-alumina is thermodynamically stable at grain sizes <12 nm [McHale et al., Science 277, 788 (1997)]. In order to correlate phase formation with synthesis conditions, the plasma chemistry and ion energy distributions were measured at synthesis conditions. These results indicate that for a substrate bias potential of −50 V, ion energies in excess of 100 eV are attained, both from a high energy tail and the accelerated ions with charge >1. These results are of importance for an increased understanding of the evolution of film composition and microstructure, also providing a pathway to γ-alumina growth at temperatures as low as 200 o C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. M. Schneider W. D. Sproul A. A. Voevodin A. Matthews (1997) J. Vac. Sci. Technol. A 15 1084 Occurrence Handle10.1116/1.580434

    Article  Google Scholar 

  2. S. Zhu F. Wang H. Lou W. Wu (1995) Surf. Coat Technol. 71 9 Occurrence Handle10.1016/0257-8972(94)02289-3

    Article  Google Scholar 

  3. E. Serra G. Benamati O. V. Ogorodnikova (1998) J. Nucl. Mater. 255 105 Occurrence Handle10.1016/S0022-3115(98)00038-5

    Article  Google Scholar 

  4. A. Schütze D.T. Quinto (2003) Surf Coat Technol. 162 174 Occurrence Handle10.1016/S0257-8972(02)00705-3

    Article  Google Scholar 

  5. C. Täschner B. Ljungberg V. Alfredsson I. Endler A. Leonhardt (1998) Surf Coat Technol 108-109 257 Occurrence Handle10.1016/S0257-8972(98)00561-1

    Article  Google Scholar 

  6. G. H. Prengel W. Heinrich G. Roder K. H. Wendt (1994) Surf Coat Technol. 68-69 217 Occurrence Handle10.1016/0257-8972(94)90163-5

    Article  Google Scholar 

  7. Edelstahl Handbuch (Böhler Edelstahl GmbH, Kapfenberg, Germany, 1998)

  8. O. Zywitzki G. Hoetzsch F. Fietzke K. Goedicke (1996) Surf. Coat Technol. 82 169 Occurrence Handle10.1016/0257-8972(95)00270-7

    Article  Google Scholar 

  9. O. Zywitzki G. Hoetzsch (1996) Surf Coat Technol. 86-87 640 Occurrence Handle10.1016/S0257-8972(96)02992-1

    Article  Google Scholar 

  10. Y. Yamada-Takamura F. Koch H. Maier H. Bolt (2001) Surf Coat Technol. 142-144 260 Occurrence Handle10.1016/S0257-8972(01)01206-3

    Article  Google Scholar 

  11. R. Brill F. Koch J. Mazurelle D. Levchuk M. Balden Y. Yamada-Takamura H. Maier H. Bolt (2003) Surf Coat Technol. 174-175 606 Occurrence Handle10.1016/S0257-8972(03)00539-5

    Article  Google Scholar 

  12. O. Kyrylov D. Kurapov J. M. Schneider (2005) Appl. Phys. A. 80 1657 Occurrence Handle10.1007/s00339-004-2998-y

    Article  Google Scholar 

  13. J.M. Andersson Z. Czigány P. Jin U. Helmersson (2004) J. Vac. Sci. Technol. A. 22 117 Occurrence Handle10.1116/1.1636157

    Article  Google Scholar 

  14. S. Ruppi A. Larsson (2001) Thin Solid Films 388 50 Occurrence Handle10.1016/S0040-6090(01)00814-8

    Article  Google Scholar 

  15. A. Larsson S. Ruppi (2001) Int. J. Refract Hard Mater. 19 515 Occurrence Handle10.1016/S0263-4368(01)00016-6

    Article  Google Scholar 

  16. F. Fietzke K. Goedicke W. Hempel (1996) Surf. Coat Technol. 86 657 Occurrence Handle10.1016/S0257-8972(96)03075-7

    Article  Google Scholar 

  17. O. Zywitzki G. Hoetzsch (1997) Surf Coat Technol. 94–95 303 Occurrence Handle10.1016/S0257-8972(97)00341-1

    Article  Google Scholar 

  18. R. Cremer M. Witthaut D. Neuschütz G. Erkens T. Leyendecker M. Feldhege (1999) Surf Coat Technol. 120-121 213 Occurrence Handle10.1016/S0257-8972(99)00458-2

    Article  Google Scholar 

  19. Q. Li Y.-H. Yu C.S. Bhatia L.D. Marks S.C. Lee Y.W. Chung (2000) J. Vac. Sci. Technol. A. 18 2333 Occurrence Handle10.1116/1.1286715

    Article  Google Scholar 

  20. U. Kreissig S. Grigull K. Lange P. Nitzsche B. Schmidt (1998) Nucl. Instrum. Meth. B 136 674

    Google Scholar 

  21. J.M. Schneider A. Anders B. Hjörvarsson I. Petrov K. Macák U. Helmersson J.-E. Sundgren (1999) Appl. Phys. Lett. 74 200 Occurrence Handle10.1063/1.123292

    Article  Google Scholar 

  22. J. M. Schneider K. Larsson J. Lu E. Olsson B. Hjörvarsson (2002) Appl. Phys. Lett. 80 1144 Occurrence Handle10.1063/1.1448389

    Article  Google Scholar 

  23. S. I. Castañeda I. Montero J. M. Ripalda N. Días L. Galán F. Rueda (1999) J Appl Phys. 85 8415 Occurrence Handle10.1063/1.370690

    Article  Google Scholar 

  24. Joint Committee on Powder Diffraction Standards (JCPDS).

  25. J. M. Schneider A. Anders G. Y. Yushkov (2001) Appl. Phys. Lett. 78 150 Occurrence Handle10.1063/1.1339847

    Article  Google Scholar 

  26. E. Oks and G. Yushkov, 17th International Symposium on Discharges and Electrical Insulation in Vacuum, Berkeley (1996).

  27. P. Jin G. Xu M. Tazawa K. Yoshimura D. Music J. Alami U. Helmersson (2002) J. Vac. Sci. Technol. A. 20 2134 Occurrence Handle10.1116/1.1513641

    Article  Google Scholar 

  28. P. Jin S. Nakao S. X. Wang L. M. Wang (2003) Appl. Phys. Lett. 82 1024 Occurrence Handle10.1063/1.1544442

    Article  Google Scholar 

  29. D. Kurapov J. M. Schneider (2004) Steel Res. Int. 75 577

    Google Scholar 

  30. B. A. Movchan A. V. Demchishin (1969) Phys. Met Metallogr. 28 83

    Google Scholar 

  31. J. A. Thornton (1974) J. Vac. Sci. Technol. 11 666 Occurrence Handle10.1116/1.1312732

    Article  Google Scholar 

  32. T. Savisalo D. B. Lewis P. Eh. Hovsepian W.-D. Münz (2004) Thin Solid Films 460 94 Occurrence Handle10.1016/j.tsf.2003.12.150

    Article  Google Scholar 

  33. W. D. Callister (2000) Materials Science and Engineering An Introduction EditionNumber5 John Wiley & Sons New York

    Google Scholar 

  34. B. D. Cullity (1978) Elements of X-Ray Diffraction Addison-Wesley Menlo Park, California

    Google Scholar 

  35. J. M. McHale A. Auroux A. J. Perrotta A. Navrotsky (1997) Science 277 788 Occurrence Handle10.1126/science.277.5327.788

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Rosén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosén, J., Mráz, S., Kreissig, U. et al. Effect of Ion Energy on Structure and Composition of Cathodic Arc Deposited Alumina Thin Films. Plasma Chem Plasma Process 25, 303–317 (2005). https://doi.org/10.1007/s11090-004-3130-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-004-3130-y

Keywords

Navigation