Programming and Computer Software

, Volume 31, Issue 2, pp 103–109 | Cite as

Construction of generalized Gauss-Jacobi quadratures by means of computer algebra methods

  • A. I. Bogolubsky
  • S. L. Skorokhodov


Operating System Artificial Intelligence Software Engineer Computer Algebra Algebra Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gautschi, W., The Use of Rational Functions in Numerical Quadrature, J. Comput. Appl. Math., 2001, vol. 133, no.1–2, pp. 111–126.Google Scholar
  2. 2.
    Laporta, S., High-Precision Calculation of Multi-loop Feynman Integrals by Difference Equations, Int. J. Mod. Phys. A15, 2000, pp. 5087–5159; arXiv: hep-ph/0102033 v1.Google Scholar
  3. 3.
    Mastroianni, G. and Monegato, G., Error Estimates in the Numerical Evaluation of some BEM Singular Integrals, Math. Comp., 2001, vol. 70, no.233, pp. 251–267.Google Scholar
  4. 4.
    Boikov, I.V., Numerical Methods of Computation of Singular and Hypersingular Integrals, Int. J. Math. Math. Sci., 2001, vol. 28, no.3, pp. 127–179.Google Scholar
  5. 5.
    Kolm, P. and Rokhlin, V.V., Numerical Quadratures for Singular and Hypersingular Integrals, Comput. Math. Appl., 2001, vol. 41, no.3–4, pp. 327–352.Google Scholar
  6. 6.
    Saylor, P.E. and Smolarski, D.C., Why Gaussian Quadrature in the Complex Plane? Numer. Algorithms, 2001, vol. 26, no.3, pp. 251–280.Google Scholar
  7. 7.
    Bakhvalov, N.S., Chislennye metody (Numerical Methods), Moscow: Nauka, 1973.Google Scholar
  8. 8.
    Krylov, V.I., Bobkov, V.V., and Monastyrnyi, P.I., Nachala teorii vychislitel’nykh metodov. Interpolirovanie i integrirovanie (Fundamentals of Theory of Computational Methods: Interpolation and Integration), Minsk: Nauka i Tekhnika, 1983.Google Scholar
  9. 9.
    Lavrent’ev, M.A. and Shabat, B.V., Metody teorii funktsii kompleksnogo peremennogo (Methods of Theory of Functions of Complex Variables), Moscow: Nauka, 1987.Google Scholar
  10. 10.
    Bateman, H. and Erdelyi, A., Higher Transcendental Functions, New York: McGraw-Hill, 1953. Translated under the title Vysshie transtsendentnye funktsii. Giper-geometricheskaya funktsiya. Funktsiya Lezhandra, Moscow: Nauka, 1973.Google Scholar
  11. 11.
    Nikiforov, A.F. and Uvarov, V.B., Spetsial’nye funktsii matematicheskoi fiziki (Special Functions of Mathematical Physics), Moscow: Nauka, 1978.Google Scholar
  12. 12.
    Gel’fond, A.O., Ischislenie konechnykh raznostei (Calculus of Finite Differences), Moscow: Nauka, 1967.Google Scholar
  13. 13.
    Wimp, J., Computation with Recurrence Relations, London: Pitman, 1984.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • A. I. Bogolubsky
    • 1
  • S. L. Skorokhodov
    • 2
  1. 1.Department of Mechanics and MathematicsMoscow State UniversityVorob’evy gory, MoscowRussia
  2. 2.Computing CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations