First-Principles Calculated Structures and Carbon Binding Energies of Σ11 \({{\left\{ {10\bar{1}1} \right\}} \mathord{\left/ {\vphantom {{\left\{ {10\bar{1}1} \right\}} {\left\{ {10\bar{1}\bar{1}} \right\}}}} \right. \kern-0pt} {\left\{ {10\bar{1}\bar{1}} \right\}}}\) Tilt Grain Boundaries in Corundum Structured Metal Oxides

Abstract

To give a basic understanding of the experimentally observed difference between Cr2O3 and Al2O3 scales on carbon permeation, we employed the first-principles calculation methods to predict atomistic structures, formation energies, and carbon binding energies of Σ11 \({{\left\{ {10\bar{1}1} \right\}} \mathord{\left/ {\vphantom {{\left\{ {10\bar{1}1} \right\}} {\left\{ {10\bar{1}\bar{1}} \right\}}}} \right. \kern-0pt} {\left\{ {10\bar{1}\bar{1}} \right\}}}\) tilt grain boundaries (GB) in both α-Al2O3 and α-Cr2O3 with a corundum structure. Owing to different surface terminations, we predicted two distinct kinds of stable atomistic structures for the GB: one with measurable voids and high formation energy, and the other with a compact interface and low formation energy. The predicted GB structures agree with experimental images. No significant structural difference was found for the same GB in α-Al2O3 and α-Cr2O3. Moreover, we predicted that atomic carbon would bind to the Σ11 \({{\left\{ {10\bar{1}1} \right\}} \mathord{\left/ {\vphantom {{\left\{ {10\bar{1}1} \right\}} {\left\{ {10\bar{1}\bar{1}} \right\}}}} \right. \kern-0pt} {\left\{ {10\bar{1}\bar{1}} \right\}}}\) GB in α-Cr2O3 appreciably more strongly than in α-Al2O3. Therefore, our computational results suggest that chemical affinity rather than geometric structure of the GBs is related to different carbon permeation behaviors in Al2O3 and Cr2O3 scales.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    J. H. Perepezko, Science326, 2009 (1068).

    CAS  Article  Google Scholar 

  2. 2.

    D. J. Young and J. Zhang, JOM70, 2018 (1493).

    CAS  Article  Google Scholar 

  3. 3.

    M. P. Brady, I. G. Wright and B. Gleeson, JOM52, 2000 (16).

    CAS  Article  Google Scholar 

  4. 4.

    N. P. Padture, M. Gell and E. H. Jordan, Science Science (New York, N.Y.)296, 2002 (280). https://doi.org/10.1126/science.1068609.

    CAS  Article  Google Scholar 

  5. 5.

    R. Prescott and M. J. Graham, Oxidation of Metals38, 1992 (233). https://doi.org/10.1007/bf00666913.

    CAS  Article  Google Scholar 

  6. 6.

    G. H. Meier, et al., Oxidation of Metals74, 2010 (319). https://doi.org/10.1007/s11085-010-9215-5.

    CAS  Article  Google Scholar 

  7. 7.

    N. Otsuka, Y. Shida and H. Fujikawa, Oxidation of Metals32, 1989 (13).

    CAS  Article  Google Scholar 

  8. 8.

    J. Pirón Abellán, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures26, 2009 (63).

    Article  Google Scholar 

  9. 9.

    T. D. Nguyen, J. Q. Zhang and D. J. Young, Materials at High Temperatures32, 2015 (16). https://doi.org/10.1179/0960340914Z.00000000056.

    CAS  Article  Google Scholar 

  10. 10.

    M. H. S. Bidabadi, et al., Corrosion Science 2019. https://doi.org/10.1016/j.corsci.2019.108252.

    Article  Google Scholar 

  11. 11.

    H. J. Grabke, K. Ohla, J. Peters and I. Wolf, Materials and Corrosion34, 1983 (495). https://doi.org/10.1002/maco.19830341002.

    CAS  Article  Google Scholar 

  12. 12.

    H. M. Tawancy and N. M. Abbas, Journal of Materials Science27, (4), 1992 (1061). https://doi.org/10.1007/bf01197661.

    CAS  Article  Google Scholar 

  13. 13.

    H. M. Tawancy, Oxidation of Metals83, 2015 (167). https://doi.org/10.1007/s11085-014-9513-4.

    CAS  Article  Google Scholar 

  14. 14.

    S. B. Newcomb and W. M. Stobbs, Oxidation of metals26, 1986 (431).

    CAS  Article  Google Scholar 

  15. 15.

    K. Kaya, S. Hayashi and S. Ukai, ISIJ international54, 2014 (1379).

    CAS  Article  Google Scholar 

  16. 16.

    F. Rouillard and T. Furukawa, Corrosion Science105, 2016 (120).

    CAS  Article  Google Scholar 

  17. 17.

    F. Rouillard, G. Moine, L. Martinelli and J. Ruiz, Oxidation of Metals77, 2012 (27).

    CAS  Article  Google Scholar 

  18. 18.

    T. Gheno, D. Monceau and D. J. Young, Corrosion Science64, 2012 (222).

    CAS  Google Scholar 

  19. 19.

    C. S. Giggins and F. S. Pettit, Oxidation of Metals14, 1980 (363). https://doi.org/10.1007/bf00603609.

    CAS  Article  Google Scholar 

  20. 20.

    C. Fujii and R. Meussner, Journal of the Electrochemical Society114, 1967 (435).

    CAS  Article  Google Scholar 

  21. 21.

    I. Wolf and H. J. Grabke, Solid State Communications54, 1985 (5). https://doi.org/10.1016/0038-1098(85)91021-X.

    CAS  Article  Google Scholar 

  22. 22.

    D. J. Young, T. D. Nguyen, P. Felfer, J. Zhang and J. M. Cairney, Scripta Materialia77, 2014 (29).

    CAS  Article  Google Scholar 

  23. 23.

    T. D. Nguyen, A. La Fontaine, L. Yang, J. M. Cairney, J. Zhang and D. J. Young, Corrosion Science132, 2018 (125). https://doi.org/10.1016/j.corsci.2017.12.024.

    CAS  Article  Google Scholar 

  24. 24.

    J. Cho, H. Chan, M. Harmer and J. Rickman, Journal of the American Ceramic Society81, 2005 (3001). https://doi.org/10.1111/j.1151-2916.1998.tb02726.x.

    Article  Google Scholar 

  25. 25.

    T. Nakagawa, et al., Acta Materialia55, 2007 (6627).

    CAS  Article  Google Scholar 

  26. 26.

    Y. Lei, Y. Gong, Z. Duan and G. Wang, Physical Review B87, 2013 (214105). https://doi.org/10.1103/PhysRevB.87.214105.

    CAS  Article  Google Scholar 

  27. 27.

    T. Höche, P. R. Kenway, H.-J. Kleebe, M. Rühle and P. A. Morris, Journal of the American Ceramic Society77, 1994 (339). https://doi.org/10.1111/j.1151-2916.1994.tb07001.x.

    Article  Google Scholar 

  28. 28.

    P. R. Kenway, Journal of the American Ceramic Society77, 1994 (349). https://doi.org/10.1111/j.1151-2916.1994.tb07002.x.

    CAS  Article  Google Scholar 

  29. 29.

    T. Höche, P. R. Kenway, H.-J. Kleebe, M. W. Finnis and M. Rühle, Journal of Physics and Chemistry of Solids55, 1994 (1067). https://doi.org/10.1016/0022-3697(94)90125-2.

    Article  Google Scholar 

  30. 30.

    S.-D. Mo, W.-Y. Ching and R. H. French, Journal of the American Ceramic Society79, 1996 (627). https://doi.org/10.1111/j.1151-2916.1996.tb07921.x.

    CAS  Article  Google Scholar 

  31. 31.

    G. Kresse, Journal of Non-Crystalline Solids192–193, 1995 (222). https://doi.org/10.1016/0022-3093(95)00355-X.

    Article  Google Scholar 

  32. 32.

    G. Kresse and J. Furthmüller, Computational Materials Science6, 1996 (15). https://doi.org/10.1016/0927-0256(96)00008-0.

    CAS  Article  Google Scholar 

  33. 33.

    G. Kresse and D. Joubert, Physical Review B59, 1999 (1758). https://doi.org/10.1103/PhysRevB.59.1758.

    CAS  Article  Google Scholar 

  34. 34.

    J. P. Perdew, K. Burke and M. Ernzerhof, Physical review letters77, 1996 (3865).

    CAS  Article  Google Scholar 

  35. 35.

    A. I. Liechtenstein, V. V. Anisimov and J. Zaanen, Physical Review. B, Condensed Matter52, 1995 (R5467). https://doi.org/10.1103/physrevb.52.r5467.

    CAS  Article  Google Scholar 

  36. 36.

    Y. Wang, et al., Surface Science606, 2012 (1422). https://doi.org/10.1016/j.susc.2012.05.006.

    CAS  Article  Google Scholar 

  37. 37.

    C. Gray, Y. Lei and G. Wang, Journal of Applied Physics120, 2016 (215101). https://doi.org/10.1063/1.4970882.

    CAS  Article  Google Scholar 

  38. 38.

    J. C. Boettger, Physical Review B55, 1997 (750).

    CAS  Article  Google Scholar 

  39. 39.

    F. O. Lebreau, M. M. Islam, B. Diawara and P. Marcus, The Journal of Physical Chemistry C118, 2014 (18133).

    CAS  Article  Google Scholar 

  40. 40.

    H. d’Amour, D. Schiferl, W. Denner, H. Schulz and W. B. Holzapfel, Journal of Applied Physics49, 1978 (4411).

    Article  Google Scholar 

  41. 41.

    L. W. Finger and R. M. Hazen, Journal of Applied Physics51, 1980 (5362).

    CAS  Article  Google Scholar 

  42. 42.

    I. Milas, B. Hinnemann and A. E. Carter, Journal of Materials Research23, 2008 (22). https://doi.org/10.1557/jmr.2008.0188.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tsinghua University Initiative Scientific Research Program and the National Magnetic Confinement Fusion Energy Research Project of China (2015GB118001). Y. Zheng thanks the CSC for the financial support (201706210110) to visit University of Pittsburgh. G. Wang gratefully acknowledges computational resources provided by the University of Pittsburgh Center for Research Computing.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Guofeng Wang or Zhi-Gang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Liu, Z., Lei, Y. et al. First-Principles Calculated Structures and Carbon Binding Energies of Σ11 \({{\left\{ {10\bar{1}1} \right\}} \mathord{\left/ {\vphantom {{\left\{ {10\bar{1}1} \right\}} {\left\{ {10\bar{1}\bar{1}} \right\}}}} \right. \kern-0pt} {\left\{ {10\bar{1}\bar{1}} \right\}}}\) Tilt Grain Boundaries in Corundum Structured Metal Oxides. Oxid Met 94, 37–49 (2020). https://doi.org/10.1007/s11085-020-09977-4

Download citation

Keywords

  • Density functional theory
  • Grain boundaries
  • Alumina
  • Chromium oxide
  • Carbon binding energy