X-ray-Excited Optical Luminescence Imaging for On-Site Analysis of Alumina Scale


On-site analysis of the composition, morphology, and thickness of surface scale on heat-resistant alloys helps to efficiently prevent serious problems such as failure and corrosion during their operation and to predict their remaining life. Currently, there are no analytical methods available that satisfy the requirements for the on-site analysis of oxide scale, which include short measurement time, nondestructive measurement, and portability of the analyzer. This study proposes a nondestructive analytical method to simultaneously identify alumina scale, which is one the most important protective oxide scales for base alloys, and to evaluate its morphology and thickness within 10 s by obtaining X-ray-excited optical luminescence (XEOL) images of the alloy surfaces. This was verified on Fe–25%Al, Fe–15%Al–10%Cr, and NiAl alloys heated at 900 or 1000 °C for different holding times. The XEOL images allow identifying alumina scale and observing its morphology from the infrared luminescence at 695 nm. The alumina scale thickness can be determined from the R value of the XEOL images in the range of 0.20–1.50 μm. The XEOL measurement can be performed in the air, and the setup primarily requires a digital camera and an X-ray tube used in portable analyzers such as X-ray fluorescence analyzer. The results suggest that the XEOL imaging method is suitable for the on-site evaluation of oxide scales on practical heat-resistant alloys.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    H. Hindam and D. P. Whittle, Oxidation of Metals18, 245 (1982).

    CAS  Article  Google Scholar 

  2. 2.

    F. H. Stott, G. C. Wood and J. Stringer, Oxidation of Metals44, 113 (1995).

    CAS  Article  Google Scholar 

  3. 3.

    D. J. Young, High Temperature Oxidation and Corrosion of Metals, vol. 1, (Elsevier, Amsterdam, 2016).

    Google Scholar 

  4. 4.

    P. Kofstand, High Temperature Corrosion, (Elsevier, London, 1988).

    Google Scholar 

  5. 5.

    K. Loeffel, L. Anand and Z. M. Gasem, Acta Materialia61, 399 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    S. Chevalier, in Shreir’s Corrosion, eds. R. A. Cottis, et al. (Elsevier, Amsterdam, 2010), p. 132.

    Google Scholar 

  7. 7.

    C. A. C. Sequeira, High Temperature Corrosion: Fundamentals and Engineering, (Wiley, Hoboken, 2019).

    Google Scholar 

  8. 8.

    H. Chen, M. M. Rogalski and J. N. Anker, Physical Chemistry Chemical Physics14, 13469 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    D. Benza, U. Uzair, Y. Raval, T. J. Tzeng, C. J. Behrend, and J. N. Anker, in Proceedings of SPIE—The International Society for Optical Engineering (2017), p. 10081.

  10. 10.

    M. K. Burdette, et al., Langmuir35, 171 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    W. Fan, et al., Advanced Materials31, e1806381 (2019).

    Article  Google Scholar 

  12. 12.

    M. Udayakantha, P. Schofield, G. R. Waetzig and S. Banerjee, Journal of Solid State Chemistry270, 569 (2019).

    CAS  Article  Google Scholar 

  13. 13.

    W. Sun, Z. Zhou, G. Pratx, X. Chen and H. Chen, Theranostics10, 1296 (2020).

    Article  Google Scholar 

  14. 14.

    S. Imashuku and K. Wagatsuma, Corrosion Science154, 226 (2019).

    CAS  Article  Google Scholar 

  15. 15.

    C. Houngniou, S. Chevalier and J. P. Larpin, Oxidation of Metals65, 409 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    Z. G. Zhang, F. Gesmundo, P. Y. Hou and Y. Niu, Corrosion Science48, 741 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    G. Y. Lai, High-Temperature Corrosion and Materials Applications, (ASM International, Novelty, 2007).

    Google Scholar 

  18. 18.

    B. A. Pint, in Shreir’s Corrosion, eds. R. A. Cottis, et al. (Elsevier, Amsterdam, 2010), p. 606.

    Google Scholar 

  19. 19.

    S. Imashuku, K. Ono and K. Wagatsuma, Microscopy and Microanalysis23, 1143 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    S. Imashuku and K. Wagatsuma, X‐Ray Spectrometry48, 522 (2019).

    CAS  Article  Google Scholar 

  21. 21.

    S. Imashuku and K. Wagatsuma, Metallurgical and Materials Transactions B (2020): submitted.

  22. 22.

    S. Imashuku, K. Ono, R. Shishido, S. Suzuki and K. Wagatsuma, Materials Characterization131, 210 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    S. Imashuku, H. Tsuneda and K. Wagatsuma, Metallurgical and Materials Transactions B51B, 28 (2020).

    Google Scholar 

  24. 24.

    S. Imashuku and K. Wagatsuma, Minerals Engineering151, 106317 (2020).

    CAS  Article  Google Scholar 

  25. 25.

    S. Imashuku and K. Wagatsuma, Oxidation of Metals93, 175 (2019).

    Article  Google Scholar 

  26. 26.

    S. Imashuku, H. Tsuneda and K. Wagatsuma, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy229, 117952 (2020).

    CAS  Article  Google Scholar 

  27. 27.

    S. Imashuku and K. Wagatsuma, Metallurgical and Materials Transactions B.51B, 79 (2020).

    Article  Google Scholar 

  28. 28.

    K. Sato, S. Shimada, H. Toyoda, T. Yanai and N. Hori, Journal of The Remote Sensing Society of Japan36, 131 (2016).

    Google Scholar 

  29. 29.

    B. G. Yacobi, and D. B. Holt, in Cathodoluminescence Microscopy of Inorganic Solids (New York: Plenum Press; 1990), p. 151.

  30. 30.

    Q. Wen, D. M. Lipkin and D. R. Clarke, Journal of the American Ceramic Society81, 3345 (1998).

    CAS  Article  Google Scholar 

  31. 31.

    L. Shen, C. Hu, S. Zhou, A. Mukherjee and Q. Huang, Optical Materials35, 1268 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    A. Rastorguev, M. Baronskiy, A. Zhuzhgov, A. Kostyukov, O. Krivoruchko and V. Snytnikov, RSC Advances5, 5686 (2015).

    CAS  Article  Google Scholar 

Download references


This work was supported by Iketani Science and Technology Foundation (Grant No. 0311066-A). We thank Dr. Nagasako for preparing NiAl alloy.

Author information



Corresponding author

Correspondence to Susumu Imashuku.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Imashuku, S., Wagatsuma, K. X-ray-Excited Optical Luminescence Imaging for On-Site Analysis of Alumina Scale. Oxid Met 94, 27–36 (2020). https://doi.org/10.1007/s11085-020-09976-5

Download citation


  • X-ray-excited optical luminescence
  • On-site analysis
  • Alumina scale
  • Alumina-forming alloy