Skip to main content
Log in

Oxidation Behavior of the Skutterudite Material Ce0.75Fe3CoSb12

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A thermoelectric generator is a powerful system used to produce electricity by the action of heat. The development of nanostructured thermoelectric materials is widespread with the objective to improve their efficiency. However, if these materials are used at high temperatures under oxidative atmosphere (e.g., in air), they may suffer degradation in service, drastically decreasing their lifespan. This work investigates the oxidation behavior of an innovative skutterudite material made of cerium, iron, cobalt and antimony (Ce0.75Fe3CoSb12) either microstructured or nanostructured. For that purpose, several oxidation experiments are carried out under a flow of synthetic air at 650 K (15 h, 50 h and 100 h). The oxide layers formed on surface are observed, and their characteristics (chemical composition, thickness, structure) are compared to those obtained with microstructured Ce0.75Fe3CoSb12 samples. As a result, it is observed that the nanostructuring of the skutterudite materials slightly slow down the oxidation reactions in air. Consequently, the nanostructured Ce0.75Fe3CoSb12 is established to be a promising thermoelectric material for use in oxidative environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Rull-Bravo, A. Moure, J. F. Fernandez and M. Martin-Gonzalez, RSC Advances 5, 2015 (41653).

    Article  Google Scholar 

  2. K. Salzgeber, P. Prenninger, A. Grytsiv, P. Rogl and E. Bauer, Journal of Electronic Materials 39, (9), 2010 (2074).

    Article  Google Scholar 

  3. J. Q. Guo, H. Y. Geng, T. Ochi, et al., Journal of Electronic Materials 41, (6), 2012 (1036).

    Article  Google Scholar 

  4. J. Zhang, B. Xu, L. M. Wang, et al., Applied Physics Letters 98, (7), 2011 (072109).

    Article  Google Scholar 

  5. D. Zhao, M. Zuo, J. Leng and H. Geng, Intermetallics 40, 2013 (71).

    Article  Google Scholar 

  6. W. Liu, Q. Jie, H. S. Kim and Z. Ren, Acta Materialia 87, 2015 (357).

    Article  Google Scholar 

  7. X. Shi, J. Yang, J. R. Salvador, et al., Journal of the American Chemical Society 133, (20), 2011 (7837).

    Article  Google Scholar 

  8. X. Shi, S. Bai, L. Xi, et al., Journal of Materials Research 26, (15), 2011 (1745).

    Article  Google Scholar 

  9. E. Alleno, D. Berardan, C. Godart, et al., Physica B 383, 2006 (103).

    Article  Google Scholar 

  10. D. Berardan, E. Alleno, C. Godart, O. Rouleau and J. Rodriguez-Carvajal, Materials Research Bulletin 40, 2005 (537).

    Article  Google Scholar 

  11. D. Berardan, C. Godart, E. Alleno, E. Leroy and P. Rogl, Journal of Alloys and Compounds 350, 2003 (30).

    Article  Google Scholar 

  12. M. S. Toprak, C. Stiewe, D. Platzek, et al., Advanced Functional Materials 14, (12), 2004 (1189).

    Article  Google Scholar 

  13. J. L. Mi, T. J. Zhu, X. B. Zhao and J. Ma, Journal of Applied Physics 101, (5), 2007 (054314).

    Article  Google Scholar 

  14. G. Joshi, H. Lee, Y. Lan, et al., Nano Letters 8, (12), 2008 (4670).

    Article  Google Scholar 

  15. P. Steyer, A. Mege, D. Pech, et al., Surface & Coatings Technology 202, (11), 2008 (2268).

    Article  Google Scholar 

  16. V. Savchuk, A. Boulouz, S. Chakraborty, J. Schumann and H. Vinzelberg, Journal of Applied Physics 92, (9), 2002 (5319).

    Article  Google Scholar 

  17. R. Hara, S. Inoue, H. T. Kaibe and S. Sano, Journal of Alloys and Compounds 349, (1–2), 2003 (297).

    Article  Google Scholar 

  18. E. Alleno, M. Gaborit, V. Ohorodniichuk, B. Lenoir and O. Rouleau, Journal of Electronic Materials 42, (7), 2013 (1835).

    Article  Google Scholar 

  19. E. Alleno, E. Zehani, M. Gaborit, et al., Journal of Alloys and Compounds 692, 2017 (676).

    Article  Google Scholar 

  20. P. Qiu, X. Xia, X. Huang, et al., Journal of Alloys and Compounds 612, 2014 (365).

    Article  Google Scholar 

  21. B. V. Mahesh, R. K. Singh Raman and C. C. Koch, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 46, 2015 (1814).

    Article  Google Scholar 

  22. H. Benhayoune, N. Dumelié and G. Balossier, Thin Solid Films 493, (1–2), 2005 (113).

    Article  Google Scholar 

  23. W. L. Bragg, Philosophical Magazine 40, (236), 1920 (169).

    Google Scholar 

  24. S. Singh, V. Gupta, B. C. Yadav, P. Tandon and A. K. Singh, Sensors & Actuators, B: Chemical 195, 2014 (373).

    Article  Google Scholar 

  25. A. Ahmed and S. Han, Journal of Alloys and Compounds 686, 2016 (540).

    Article  Google Scholar 

  26. J. Leszczynski, K. T. Wojciechowski and A. L. Malecki, Journal of Thermal Analysis and Calorimetry 105, 2011 (211).

    Article  Google Scholar 

  27. D. K. Shin, I. H. Kim, K. H. Park, S. Lee and W. S. Seo, Journal of Electronic Materials 44, (6), 2015 (1858).

    Article  Google Scholar 

  28. X. Xia, P. Qiu, X. Huang, et al., Journal of Electronic Materials 43, (6), 2014 (1639).

    Article  Google Scholar 

  29. C. Zhu, X. Zhao, Y. Chen, Y. Zhao, P. Xiao, I. S. Molchan and G. E. Thompson, Oxidation of Metals 85, (3–4), 2016 (391).

    Article  Google Scholar 

  30. R. W. Balluffi, Metallurgical Transactions A, Physical Metallurgy and Materials Science A 13, (12), 1982 (2069).

    Article  Google Scholar 

  31. R. W. Balluffi, Metallurgical Transactions B, Proceedings of Metallurgical B. 13, (4), 1982 (527).

    Article  Google Scholar 

  32. R. A. De Souza, M. J. Pietrowski, U. Anselmi-Tamburini, et al., Physical Chemistry Chemical Physics: PCCP 10, 2008 (2067).

    Article  Google Scholar 

  33. R. K. Singh Raman and R. K. Gupta, Corrosion Science 51, (2), 2009 (316).

    Article  Google Scholar 

  34. R. K. Singh Raman, R. K. Gupta and C. C. Koch, Philosophical Magazine A 90, (23), 2010 (3233).

    Article  Google Scholar 

  35. A. Atkinson, Reviews of Modern Physics 57, (2), 1985 (437–470).

    Article  Google Scholar 

  36. R. A. Andrievski, Journal Materials Science 49, 2014 (1449–1460).

    Article  Google Scholar 

Download references

Acknowledgements

The French National Research Agency (ANR) is gratefully acknowledged for the financial support in the project Nanoskut (ANR-12-PRGE-0008-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Drevet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special issue in honor of Professor Vera Adam-Vizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drevet, R., Aranda, L., Petitjean, C. et al. Oxidation Behavior of the Skutterudite Material Ce0.75Fe3CoSb12. Oxid Met 91, 767–779 (2019). https://doi.org/10.1007/s11085-019-09908-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09908-y

Keywords

Navigation