Rapid Assessment of Oxidation Behavior in Co-Based γ/γ′ Alloys

  • Colin A. Stewart
  • Akane Suzuki
  • Tresa M. Pollock
  • Carlos G. Levi
Original Paper

Abstract

A high-throughput, non-destructive photostimulated luminescence spectroscopy (PSLS) technique was used to analyze fifty oxidized Co-based γ/γ′ alloy samples for the presence of α-Al2O3. Alloys were produced by combinatorial ion-plasma deposition, and oxidation was performed at 1100 °C for 1 h in air. PSLS measurements are compared with microscopy of oxides in cross-section to relate the presence of the luminescence signal of α-Al2O3 with the thickness of the oxide scale. Analysis of the current dataset validates the use of PSLS as a rapid screening technique of oxidation behavior for the present materials system.

Keywords

Cobalt-base superalloys Combinatorial synthesis Oxidation Photostimulated luminescence spectroscopy 

Notes

Acknowledgements

This investigation was sponsored by the National Science Foundation under DMREF Grant DMR 1534264. The authors are grateful to GE Global Research, especially Dr. Don M. Lipkin and Messrs. Scott Weaver and Vince Tur for providing technical guidance and for performing the IPD synthesis of the combinatorial libraries. The technical assistance of Dr. Stephan Krämer and Messrs. Mark Cornish, Deryck Stave, and Chris Torbet is greatly appreciated.

References

  1. 1.
    R. C. Reed, The Superalloys, (Cambridge University Press, New York, 2006).CrossRefGoogle Scholar
  2. 2.
    H.-Y. Yan, V. A. Vorontsov and D. Dye, Corrosion Science 83, 382 (2014).CrossRefGoogle Scholar
  3. 3.
    M. S. Titus, A. Suzuki and T. M. Pollock, Superalloys 2012, 823 (2012).CrossRefGoogle Scholar
  4. 4.
    A. G. Evans, D. R. Clarke and C. G. Levi, Journal of the European Ceramic Society 28, 1405 (2008).CrossRefGoogle Scholar
  5. 5.
    D. R. Clarke, M. Oechsner and N. P. Padture, MRS Bulletin 37, 891 (2012).CrossRefGoogle Scholar
  6. 6.
    J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma and K. Ishida, Science 312, 90 (2006).CrossRefGoogle Scholar
  7. 7.
    T. M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu and A. Suzuki, JOM 62, 58 (2010).CrossRefGoogle Scholar
  8. 8.
    A. Suzuki, H. Inui and T. M. Pollock, Annual Review of Materials Research 45, 345 (2015).CrossRefGoogle Scholar
  9. 9.
    M. S. Titus, A. Suzuki and T. M. Pollock, Scripta Materialia 66, 574 (2012).CrossRefGoogle Scholar
  10. 10.
    F. Xue, H. J. Zhou, X. F. Ding, M. L. Wang and Q. Feng, Materials Letters 112, 215 (2013).CrossRefGoogle Scholar
  11. 11.
    F. H. Stott, G. C. Wood and J. Stringer, Oxidation of Metals 44, 113 (1995).CrossRefGoogle Scholar
  12. 12.
    D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Amsterdam, 2008).Google Scholar
  13. 13.
    N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, (Cambridge University Press, Cambridge, 2006).CrossRefGoogle Scholar
  14. 14.
    G. Wang, B. Gleeson and D. L. Douglass, Oxidation of Metals 35, 317 (1991).CrossRefGoogle Scholar
  15. 15.
    F. S. Pettit, Transactions of the Metallurgical Society of AIME 239, 1296 (1967).Google Scholar
  16. 16.
    M. P. Brady, I. G. Wright and B. Gleeson, JOM 52, 16 (2000).CrossRefGoogle Scholar
  17. 17.
    L. Klein, B. von Bartenwerffer, M. S. Killian, P. Schmuki and S. Virtanen, Corrosion Science 79, 29 (2014).CrossRefGoogle Scholar
  18. 18.
    L. Klein, Y. Shen, M. S. Killian and S. Virtanen, Corrosion Science 53, 2713 (2011).CrossRefGoogle Scholar
  19. 19.
    C. J. Metting, J. K. Bunn, E. Underwood, S. Smoak and J. Hattrick-Simpers, ACS Combinatorial Science 15, 419 (2013).CrossRefGoogle Scholar
  20. 20.
    R. R. Adharapurapu, J. Zhu, V. S. Dheeradhada, D. M. Lipkin and T. M. Pollock, Acta Materialia 77, 379 (2014).CrossRefGoogle Scholar
  21. 21.
    V. K. Tolpygo and D. R. Clarke, Materials at High Temperatures 17, 59 (2000).CrossRefGoogle Scholar
  22. 22.
    L. Qiu, F. Yang, W. Zhang, X. Zhao and P. Xiao, Corrosion Science 89, 13 (2014).CrossRefGoogle Scholar
  23. 23.
    R. J. Christensen, D. M. Lipkin, D. R. Clarke and K. Murphy, Applied Physics Letters 69, 3754 (1996).CrossRefGoogle Scholar
  24. 24.
    C. A. Stewart, R. K. Rhein, A. Suzuki, T. M. Pollock, C. G. Levi. Oxide scale formation in novel γ–γ’ cobalt-based alloys, in Proceedings of the 13th International Symposium on Superalloys, eds. M. Hardy, E. Huron, and U. Glatzel, et al. TMS (The Minerals, Metals & Materials Society, 2016), p. 991.Google Scholar
  25. 25.
    D. M. Lipkin and D. R. Clarke, Oxidation of Metals 45, 267 (1996).CrossRefGoogle Scholar
  26. 26.
    C. A. Schneider, W. S. Rasband and K. W. Eliceiri, Nature Methods 9, 671 (2012).CrossRefGoogle Scholar
  27. 27.
    N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos and M. Pärs, Journal of Physics: Conference Series 93, 012039 (2007).Google Scholar
  28. 28.
    E. A. G. Shillington and D. R. Clarke, Acta Materialia 47, 1297 (1999).CrossRefGoogle Scholar
  29. 29.
    F. H. Stott, P. K. N. Bartlett and G. C. Wood, Oxidation of Metals 27, 37 (1987).CrossRefGoogle Scholar
  30. 30.
    H. M. Hindam and W. W. Smeltzer, Journal of the Electrochemical Society 127, 1622 (1980).CrossRefGoogle Scholar
  31. 31.
    Q. Wen, D. M. Lipkin and D. R. Clarke, Journal of the American Ceramic Society 81, 3345 (1998).CrossRefGoogle Scholar
  32. 32.
    K. Kawagishi, A.-C. Yeh, T. Yokokawa, T. Kobayashi, Y. Koizumi, H. Harada, Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238. Paper Present Superalloys Seven Springs Mt. Resort Champion PA, USA (2012), p. 9.Google Scholar
  33. 33.
    H. Yu and D. R. Clarke, Journal of the American Ceramic Society 85, 1966 (2002).CrossRefGoogle Scholar
  34. 34.
    R. Newman and R. M. Chrenko, Physical Review 114, 1507 (1959).CrossRefGoogle Scholar
  35. 35.
    G. W. Pratt Jr. and R. Coelho, Physical Review 116, 281 (1959).CrossRefGoogle Scholar
  36. 36.
    F. Di Quarto, C. Sunseri, S. Piazza and M. C. Romano, The Journal of Physical Chemistry B 101, 2519 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Materials DepartmentUniversity of California, Santa BarbaraSanta BarbaraUSA
  2. 2.GE Global ResearchNiskayunaUSA

Personalised recommendations