Influence of Manufacturing Route on the Oxidation Resistance of Platinum-Modified Aluminide Bond Coatings and Their Performance in Thermal Barrier Coatings Deposited on a Ni-Based Superalloy

Original Paper
  • 22 Downloads

Abstract

The importance of manufacturing route of Pt-aluminide bond coatings in determining the life of thermal barrier coatings on Ni-based superalloys is demonstrated. It is shown that bond coatings aluminized by chemical vapor deposition exhibit higher resistance to oxidation in comparison with the pack cementation route, which results in about twofold increase in the life of the thermal barrier coating as determined under cycling oxidation conditions. This difference in behavior is correlated with the initial microstructures of the bond coatings and their effect on thermal stability and oxidation resistance. However, thermal barrier coatings utilizing the two types of bond coatings are found to fail by the same mechanism involving spallation of the top coating due to loss of adhesion between the thermally grown oxide and underlying bond coating. It is concluded that manufacturing by the CVD route with low Al activity decelerates the kinetics of the processes leading to degradation of the coating system in comparison with the pack cementation route with high Al activity.

Keywords

Thermal barrier coatings Bond coatings Oxidation Pt-aluminides Chemical vapor deposition Electron microscopy 

Notes

Acknowledgements

The continued support of King Fahd University of Petroleum and Minerals is greatly appreciated.

References

  1. 1.
    D. K. Das, Progress in Materials Science 58, 2013 (151).CrossRefGoogle Scholar
  2. 2.
    H. Lammermann and G. Kienel, Advanced Materials and Processes 140, 1991 (18).Google Scholar
  3. 3.
    H. E. Evans, Surface and Coatings Technology 206, 2011 (1512).CrossRefGoogle Scholar
  4. 4.
    N. P. Padture, M. Gell and E. H. Jordan, Science 296, 2002 (280).CrossRefGoogle Scholar
  5. 5.
    A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, Progress in Materials Science 46, 2001 (505).CrossRefGoogle Scholar
  6. 6.
    H. M. Tawancy, Metallography, Microstructure and Analysis 7, 2018 (65).CrossRefGoogle Scholar
  7. 7.
    J. A. Haynes, K. A. Unocic, M. J. Lance and B. A. Pint, Oxidation of Metals 86, 2016 (453).CrossRefGoogle Scholar
  8. 8.
    M. Chieux, C. Duhamel, R. Molins, L. Remy and J.-Y. Guedou, Oxidation of Metals 81, 2014 (57).CrossRefGoogle Scholar
  9. 9.
    H. M. Tawancy, A. I. Mohamed, N. M. Abbas, R. E. Jones and D. S. Rickerby, Journal of Materials Science 38, 2003 (3797).CrossRefGoogle Scholar
  10. 10.
    B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prubner and K. B. Alexander, Materials Science and Engineering A A245, 1998 (201).CrossRefGoogle Scholar
  11. 11.
    H. M. Tawancy, N. M. Abbas and T. N. Rhys-Jones, Surface and Coatings Technology 54, 1992 (1).Google Scholar
  12. 12.
    H. M. Tawancy, L. M. Al-Hadhrami, Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 133, Article No. 042101 (2011).Google Scholar
  13. 13.
    C. T. Sims, Advanced Materials and Processes 139, 1999 (32).Google Scholar
  14. 14.
    J. S. Smith, D. H. Boone, Platinum modified aluminides-present status, 1990 International Gas Turbine and Aeroengine Congress and Exposition, ASME Paper No. 90-GT-319, The American Society of Mechanical Engineers, New York, 1990.Google Scholar
  15. 15.
    C. P. K. Rao and D. C. Trivedi, Coordination Chemical Reviews 249, 2005 (613).CrossRefGoogle Scholar
  16. 16.
    G. W. Goward and L. W. Cannon, Journal of Engineering for Gas Turbines and Power-Transactions of ASME 110, 1988 (150).CrossRefGoogle Scholar
  17. 17.
    P. C. Patnaik, Materials and Manufacturing Processes 4, 1989 (133).CrossRefGoogle Scholar
  18. 18.
    S. R. Levin and R. M. Caves, Journal of the Electrochemical Society 121, 1974 (121).Google Scholar
  19. 19.
    B. M. Warnes and D. C. Punola, Surface and Coatings Technology 94–95, 1997 (1).CrossRefGoogle Scholar
  20. 20.
    B. M. Warnes, Surface and Coatings Technology 146–147, 2001 (7).CrossRefGoogle Scholar
  21. 21.
    H. O. Pierson, Handbook of Chemical Vapor Deposition: Principles, Technology and Applications, 2nd ed, (Noyes Publications, Norwich, 1999), p. 110.Google Scholar
  22. 22.
    H. M. Tawancy, L. M. Al-Hadhrami, Journal of Engineering for Gas Turbines and Power-Transactions of ASME, 132, Article No. 022103 (2010).Google Scholar
  23. 23.
    P. J. Goodhew, J. Hymphreys and R. Beanland, Electron Microscopy and Analysis, 3rd ed, (Taylor and Francis, New York, 2001), p. 21.Google Scholar
  24. 24.
    H. M. Tawancy, Oxidation of Metals 37, 1992 (143).CrossRefGoogle Scholar
  25. 25.
    H. M. Tawancy, Oxidation of Metals 86, 2016 (371).CrossRefGoogle Scholar
  26. 26.
    T. A. Ramanarayanan, R. Ayer, R. Petkovic-Luton and D. P. Leta, Oxidation of Metals 29, 1988 (445).CrossRefGoogle Scholar
  27. 27.
    B. A. Pint, J. A. Haynes and T. M. Besmann, Surface Coatings and Technology 204, 2010 (3287).CrossRefGoogle Scholar
  28. 28.
    J. A. Haynes, B. A. Pint, K. L. More, Y. Zhang and I. G. Wright, Oxidation of Metals 58, 2002 (513).CrossRefGoogle Scholar
  29. 29.
    B. A. Pint, K. L. More and I. G. Wright, Oxidation of Metals 59, 2003 (257).CrossRefGoogle Scholar
  30. 30.
    R. Pendse and J. Stringer, Oxidation of Metals 23, 1985 (1).CrossRefGoogle Scholar
  31. 31.
    P. Tomaszewicz and G. R. Wallwork, Reviews of High temperature Materials 5, 1982 (49).Google Scholar
  32. 32.
    B. Gleeson, N. Mu and S. Hayashi, Journal of Materials Science 44, 2009 (1704).CrossRefGoogle Scholar
  33. 33.
    R. Streiff and D. H. Boone, Journal of Materials Engineering and Performance 22, 2013 (2801).CrossRefGoogle Scholar
  34. 34.
    B. A. Pint, J. A. Haynes, K. L. More, J. H. Scheibel, Y. Zhang and I. G. Wright, in Superalloys 2008, eds. R. C. Reed, K. A. Green, T. P. Gabb, M. G. Fahrmann, E. S. Huron and S. A. Woodard (The Minerals, Metals and Materials Society, Warrendale, 2008), p. 641.CrossRefGoogle Scholar
  35. 35.
    H. M. Tawancy, N. M. Abbas and M. O. Aboelfotoh, Journal of Materials Science 43, 2008 (2978).CrossRefGoogle Scholar
  36. 36.
    J. A. Haynes, B. A. Pint, K. L. More, Y. Zhang and I. G. Wright, Oxidation of Metals 58, 2002 (513).CrossRefGoogle Scholar
  37. 37.
    H. M. Tawancy, N. Sridhar, N. M. Abbas and D. S. Rickerby, Scripta Metallurgica et Materialia 33, 1995 (1431).CrossRefGoogle Scholar
  38. 38.
    H. M. Tawancy, N. M. Abbas and T. N. Rhys-Jones, Surface Coatings and Technology 49, 1991 (1).CrossRefGoogle Scholar
  39. 39.
    J. Schaeffer, G. M. Kim, G. H. Meier and F. S. Pettit, in The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, ed. E. Lang (Elsevier, Amsterdam, 1989), p. 231.CrossRefGoogle Scholar
  40. 40.
    M. S. Farrell and D. H. Boone, Surface Coatings and Technology 32, 1987 (69).CrossRefGoogle Scholar
  41. 41.
    R. Streiff, O. Cerclier and D. H. Boone, Surface and Coatings Technology 32, 1987 (111).CrossRefGoogle Scholar
  42. 42.
    M. R. Jackson and J. R. Rairden, Metallurgical Transactions A 8A, 1977 (1697).CrossRefGoogle Scholar
  43. 43.
    M. Gobel, A. Rahmel, M. Schutze, M. Schorr and W. T. Wu, Materials at High Temperatures 12, 1994 (301).CrossRefGoogle Scholar
  44. 44.
    J. Angenete, K. Stiller and E. Bakchinova, Surface and Coatings Technology 176, 2004 (272).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Engineering Research, Research InstituteKing Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia

Personalised recommendations