Chromia Scale Thermally Grown on Pure Chromium Under Controlled p(O2) Atmosphere: I. Spallation Investigation Using Photoelectrochemical Techniques at a Mesoscale

  • L. Latu-Romain
  • Y. Parsa
  • S. Mathieu
  • M. Vilasi
  • Y. Wouters
Original Paper
  • 12 Downloads

Abstract

Chromia scales isothermally grown on pure chromium at 900 °C and a p(O2) of 10−12 atm during 30 min exhibit n- and p-type conduction associated with a duplex morphology with an internal equiaxed subscale for an inward (anionic) growth and an external columnar subscale for an outward (cationic) growth. After oxidation exposure, spalled regions in the oxide scale can be observed and have been studied with photoelectrochemical techniques at a mesoscale (probe diameter in the range of 50 µm). Owing to the semiconducting properties of each subscale (bandgap and conduction type), a scenario of spallation is proposed and clarifies when and where the oxide scale spallation occurs.

Keywords

Chromia Photoelectrochemistry TEM characterization Spallation 

Notes

Acknowledgements

This work has benefited from the support of the PSEUDO project of the French National Research Agency (ANR) and was performed within the framework of the Centre of Excellence of Multifunctional Architectured Materials “CEMAM” n°AN-10-LABX-44-01 funded by the “Investments for the Future” Program. Special acknowledgments are given to Gilles Renou for his precious help on TEM microscope.

References

  1. 1.
    P. Kofstad, Oxidation of Metals 44, (1/2), 1995 (3–27).CrossRefGoogle Scholar
  2. 2.
    W. C. Hagel and A. U. Seybolt, Journal of the Electrochemical Society 108, (12), 1961 (1146–1152).CrossRefGoogle Scholar
  3. 3.
    P. Kofstad and K. P. Lillerud, Oxidation of Metals 17, (3/4), 1982 (177–194).CrossRefGoogle Scholar
  4. 4.
    P. Kofstad and K. P. Lillerud, Oxidation of Metals 17, (3/4), 1982 (195–203).Google Scholar
  5. 5.
    A. Holt and P. Kofstad, Solid State Ionics 69, 1994 (127–136).CrossRefGoogle Scholar
  6. 6.
    A. Holt and P. Kofstad, Solid State Ionics 69, 1994 (137–143).CrossRefGoogle Scholar
  7. 7.
    K. P. Lillerud and P. Kofstad, Journal of the Electrochemical Society 127, (11), 1980 (2397–2409).CrossRefGoogle Scholar
  8. 8.
    A. Atkinson, Solid State Ionics 12, 1984 (309–320).CrossRefGoogle Scholar
  9. 9.
    A. Atkinson and R. I. Taylor, in Transport on Nonstoichiometric Compounds, eds. G. Simkovich and G. Stubican, Vol. 285, NATO ASI Series B129 (Plenum Press, New York, 1984).Google Scholar
  10. 10.
    K. Hoshino and N. L. Peterson, Journal of the American Ceramic Society 66, (11), 1983 (C202–C203).CrossRefGoogle Scholar
  11. 11.
    A. C. S. Sabioni, B. Lesage, A. M. Huntz, J. C. Pivin and C. Monty, Philosophical Magazine A 66, (3), 1992 (333–350).CrossRefGoogle Scholar
  12. 12.
    A. C. S. Sabioni, B. Lesage, A. M. Huntz, J. C. Pivin and C. Monty, Philosophical Magazine A 66, (3), 1992 (351–360).CrossRefGoogle Scholar
  13. 13.
    P. Kofstad, in High Temperature Corrosion (Elsevier Applied Science, London/New York, 1988), pp. 114–120.Google Scholar
  14. 14.
    D. J. Young, in High Temperature Oxidation and Corrosion of Metals (Elsevier Applied Science, London/New York, 2008), pp. 119–122.Google Scholar
  15. 15.
    K. Arnold, G. Tatlock, C. Kenel, A. Colella and P. Matteazzi, Materials at High Temperatures 5, 2017 (1–10).Google Scholar
  16. 16.
    L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi and Y. Wouters, Corrosion Science 126, 2017 (238–246).CrossRefGoogle Scholar
  17. 17.
    X. Ledoux, S. Mathieu, M. Vilasi, Y. Wouters, P. Del Gallo and M. Wagner, Oxidation of Metals 80, (1–2), 2013 (25–35).CrossRefGoogle Scholar
  18. 18.
    L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, M. Ollivier, A. Galerie and Y. Wouters, Oxidation of Metals 86, 2016 (497–509).CrossRefGoogle Scholar
  19. 19.
    L. Latu-Romain, S. Mathieu, M. Vilasi, G. Renou, S. Coindeau, A. Galerie and Y. Wouters, Oxidation of Metals 88, 2016 (481–493).CrossRefGoogle Scholar
  20. 20.
    L. Latu-Romain, Y. Madi, S. Mathieu, F. Robaut, J.-P. Petit and Y. Wouters, Corrosion Science 101, 2015 (193–200).CrossRefGoogle Scholar
  21. 21.
    F. N. Rhines, Transactions of the Metallurgical Society of AIME 137, 1940 (246–286).Google Scholar
  22. 22.
    Y. Madi, L. Latu-Romain, S. Mathieu, V. Parry, J.-P. Petit, M. Vilasi and Y. Wouters, Corrosion Science 87, 2014 (218–223).CrossRefGoogle Scholar
  23. 23.
    A. Loucif, J.-P. Petit and Y. Wouters, Journal of Nuclear Materials 443, 2013 (222–229).CrossRefGoogle Scholar
  24. 24.
    N. Pilling and R. Bedworth, Journal of the Institute of Metals 29, 1923 (529–582).Google Scholar
  25. 25.
    D. R. Clarke, Current Opinion in Solid State and Materials Science 6, 2002 (237–244).CrossRefGoogle Scholar
  26. 26.
    J. J. Barnes, J. G. Goedjen and D. A. Shores, Oxidation of Metals 32, (5/6), 1989 (449–469).CrossRefGoogle Scholar
  27. 27.
    A. M. Huntz, Materials Science and Engineering: A 201, 1995 (211–228).CrossRefGoogle Scholar
  28. 28.
    S. Daghigh, J. L. Lebrun and A. M. Huntz, Materials Science Forum 251–254, 1997 (381–388).CrossRefGoogle Scholar
  29. 29.
    A. M. Huntz, S. Daghigh, A. Piant and J. L. Lebrun, Materials Science and Engineering: A 248, 1998 (44–55).CrossRefGoogle Scholar
  30. 30.
    A. M. Huntz and M. Schütze, Materials at High Temperatures 12, 1994 (169–174).CrossRefGoogle Scholar
  31. 31.
    Y. Wang, W. W. Gerberich and D. A. Shores, Journal of Materials Research 12, 1997 (697–705).CrossRefGoogle Scholar
  32. 32.
    D. Delaunay, A. M. Huntz and P. Lacombe, Corrosion Science 20, 1980 (1109–1117).CrossRefGoogle Scholar
  33. 33.
    J. Robertson and M. I. Manning, Materials Science and Technology 6, 1990 (81–87).CrossRefGoogle Scholar
  34. 34.
    D. J. Baxter and K. Natesan, Reviews on High Temperature Materials 5, 1983 (149–250).Google Scholar
  35. 35.
    H. E. Evans and M. P. Taylor, Surface and Coatings Technology 94–95, 1997 (27–33).CrossRefGoogle Scholar
  36. 36.
    A. Galerie, F. Toscan, M. Dupeux, J. Mougin, G. Lucazeau, C. Valot, A. M. Huntz and L. Antoni, Materials Research 7, (1), 2004 (81–88).CrossRefGoogle Scholar
  37. 37.
    M. Kemdehoundja, J. L. Grosseau-Poussard, J. F. Dinhut and B. Panicaud, Journal of Applied Physics 102, 2007 (093513).CrossRefGoogle Scholar
  38. 38.
    A. Galerie, F. Toscan, E. N’Dah, K. Przybylski, Y. Wouters and M. Dupeux, Materials Science Forum 461–464, 2004 (631–638).CrossRefGoogle Scholar
  39. 39.
    R. Benaboud, P. Bouvier, J.-P. Petit, Y. Wouters and A. Galerie, Journal of Nuclear Materials 360, 2007 (151–158).CrossRefGoogle Scholar
  40. 40.
    A. S. Dorcheh, M. Schütze and M. C. Galetz, Corrosion Science 130, 2018 (261–269).CrossRefGoogle Scholar
  41. 41.
    J. F. Dierson and C. Rousselot, Surface and Coatings Technology 200, (1–4), 2005 (276–279).CrossRefGoogle Scholar
  42. 42.
    Y. C. Her, Y. C. Lan, W. C. Hsu and S. Y. Tsai, Journal of Applied Physics 96, (3), 2004 (1283–1288).CrossRefGoogle Scholar
  43. 43.
    M. Michalik, M. Hänsel, J. Zurek, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 22, (3–4), 2005 (39–47).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SIMaP, CNRSUniversité Grenoble AlpesGrenobleFrance
  2. 2.IJLUniversité de LorraineNancyFrance

Personalised recommendations